The genetic secrets to jumping the species barrier

February 11, 2010

Scientists have pinpointed specific mutations that allow a common plant virus to infect new species, according to research published in the March issue of the Journal of General Virology. Understanding the genetics of the key interactions between viruses and hosts could provide insight to how some viruses manage to jump the species barrier and even give us a better idea of how animal diseases are generated.

Researchers from Saga University, Japan studied the that took place when turnip mosaic virus (TuMV) - a plant mosaic disease spread by - adapted to infect a new species. showed TuMV had acquired an average of 140 significant mutations, on its evolutionary pathway from Brassica rapa (turnip), a host to which it is well adapted, to a new host Raphanus sativus (radish).

Interestingly, many of the mutations were found clustered in genes that code for two key viral proteins, P3 and CI. These two proteins are already known to interact with genes that help plants resist TuMV infection. Researchers think that a kind of molecular tug of war between these proteins and plant resistance mechanisms takes place, that determines not only the severity of disease following infection, but also whether the virus can infect its host in the first place.

Both plant and animal viruses are specifically adapted to infect and replicate in particular types of host. To ensure their spread and survival, viruses can adapt to their environment by mutating. Mutations may alter the severity of infection in existing hosts, change how contagious a virus is, or allow the virus to infect new hosts. Viruses such as TuMV that use RNA (rather than DNA) as their mutate especially easily as they use a copying method that is far more error-prone.

Professor Kazusato Ohshima who led the study believes that research into the virus-host interface in plants could have far-reaching benefits. "Revealing the subtleties of the interaction between viruses and plant resistance mechanisms could help breeders produce better crops, for example by selecting strains that block changes to TuMV." He also said the work could help the study of animal viruses. "We are trying to understand how novel viruses emerge - particularly how viruses are able to cross the species barrier. This in turn gives us a better idea of how pandemics are generated and how best to stem their spread."

Explore further: Whitefly spreads emerging plant viruses

Related Stories

Whitefly spreads emerging plant viruses

January 18, 2007

A tiny whitefly is responsible for spreading a group of plant viruses that cause devastating disease on food, fiber, and ornamental crops, say plant pathologists with The American Phytopathological Society (APS).

Genes identified to protect brassicas from damaging disease

November 1, 2007

Scientists have identified a new way to breed brassicas, which include broccoli, cabbage and oilseed rape, resistant to a damaging virus. Their discovery has characterised a form of resistance that appears to be durable, ...

Pandemic mutations in bird flu revealed

July 9, 2008

Scientists have discovered how bird flu adapts in patients, offering a new way to monitor the disease and prevent a pandemic, according to research published in the August issue of the Journal of General Virology. Highly ...

Researchers Engineer Self-Destructing Virus

July 10, 2008

University of Arizona researchers have sown the seeds of a virus' destruction in its own genetic code – or rather, in the genetic code of the organisms it seeks to infect. Their work could improve both the understanding ...

Tracking a crop disease could save millions of lives

August 20, 2008

Scientists have discovered why one of the world's most important agricultural diseases emerged, according to research published in the September issue of the Journal of General Virology. Maize streak virus (MSV) causes the ...

Recommended for you

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.