Researchers can watch drug activity in a molecule (w/ Video)

February 17, 2010

(PhysOrg.com) -- Weill Cornell's Scott Blanchard has developed technology that can observe drug activity in a solitary molecule while in motion. The development may lead to newer, safer drug therapies.

That means that, for first time, researchers can see how molecular movements are affected by antibiotic binding. The findings, which are published in the March issue of (6:3), may lead to the development of new drug therapies.

"Understanding molecular movements is important because function hinges on motion," said Scott Blanchard, senior author and associate professor of physiology and biophysics at WCMC. "To observe the molecule, we are decorating it with fluorescent markers, called fluorophores, that make it glow."

The video will load shortly

The fluorophores are attached to the biomolecule and are designed to exchange energy with each other in a way that accurately reports on the distance between them, like a molecular global positioning system. This process is called . When applied to the study of single-molecules, one can actually use this technique to monitor changes in the structure of individual enzymes as they function.

Traditionally, to understand how drugs affect enzymes, researchers have measured changes in the rate at which an enzyme generates product, which often requires a great deal of starting material. The new single-molecule approach provides the ability to observe enzyme function from the perspective of motion, and how such motions are influenced by the presence of substrates or drug compounds.

In the current study, Blanchard and his team investigated whether the binding of aminoglycoside-class antibiotics -- an important family of clinically useful small-molecule compounds -- affects how the ribosome moves. The ribosome, one of the largest and most essential molecular machines in the cell, is the target of almost half of all known antibiotics currently in use.

The aminoglycosides, while highly effective, tend to be toxic. Blanchard's goal was to explore the relationship between aminoglycoside activities and movements and to search for compounds with more potent activities but that have fewer side effects.

While the approach has many advantages, one of the most valuable is that it is "green," said Blanchard. As implied by its name, single-molecule methods are characterized by a greatly reduced demand for biological material. Consequently, less human and capital costs go into large-scale sample preparations. In principle, the researchers believe the single-molecule technique may one day be engineered to require a million times less starting material than is required by traditional drug screening methods.

"In addition to this material advantage, the information content of the single-molecule approach is greater, increasing the cost effectiveness of each experiment," said Blanchard. "Our challenge now is to understand whether the approach is generalizable to other enzyme systems where an understanding of its regulation and the mechanism of drug action are lacking."

Explore further: Unlocking the function of enzymes

Related Stories

Unlocking the function of enzymes

November 6, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

New computational technique can predict drug side effects

December 11, 2007

Early identification of adverse effects of drugs before they are tested in humans is crucial in developing new therapeutics, as unexpected effects account for a third of all drug failures during the development process.

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

Isolation of Fe(IV) decamethylferrocene salts

August 29, 2016

(Phys.org)—Ferrocene is the model compound that students often learn when they are introduced to organometallic chemistry. It has an iron center that is coordinated to the π electrons in two cyclopentadienyl rings. (C5H5- ...

Bringing artificial enzymes closer to nature

August 29, 2016

Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.