Protecting the brain from a deadly genetic disease

Feb 23, 2010

Huntington's disease (HD) is a cruel, hereditary condition that leads to severe physical and mental deterioration, psychiatric problems and eventually, death. Currently, there are no treatments to slow down or stop it. HD sufferers are born with the disease although they do not show symptoms until late in life. In a new study published in The Journal of Neuroscience, Stephen Ferguson and Fabiola Ribeiro of Robarts Research Institute at The University of Western Ontario identified a protective pathway in the brain that may explain why HD symptoms take so long to appear. The findings could also lead to new treatments for HD.

The symptoms of Huntington's disease are caused by cell death in specific regions of the . Patients who have HD are born with a mutated version of the protein huntingtin (Htt), which is thought to cause these toxic effects. While researchers know HD results from this single, mutated protein, no one seems to know exactly what it does, why it does not cause symptoms until later in life, or why it kills a specific set of , even though Htt is found in every single cell in the human body.

Ferguson and Ribeiro used a genetically-modified of HD to look at the effects of mutated Htt on the brain. "We found there was some kind of compensation going on early in the life of these mice that was helping to protect them from the development of the disease," says Ferguson, director of the Molecular Brain Research Group at Robarts, and a professor in the Department of Physiology & Pharmacology at Western's Schulich School of Medicine and Dentistry. "As they age, they lose this compensation and the associated protective effects, which could explain the late onset of the disease."

Ferguson adds that metabotropic glutamate receptors (mGluRs), which are responsible for communication between brain cells, play an important role in these protective effects. By interacting with the mutant Htt protein, mGluRs change the way the brain signals in the early stages of HD in an attempt to offset the disease, and save the brain from cell death. As a result, mGluRs could offer a drug target for HD treatment.

Because HD is a dominant genetic disease, every child with an affected parent has a 50 per cent chance of inheriting the fatal condition. This research, funded by the Canadian Institutes of Health Research, sheds light on the onset of HD and the potential role of a mutant protein in patients, paving the way for the development of new drug therapies.

Explore further: Altered pain processing in patients with cognitive impairment

Related Stories

Recommended for you

Altered pain processing in patients with cognitive impairment

May 29, 2015

People with dementia and other forms of cognitive impairment (CI) have altered responses to pain, with many conditions associated with increased pain sensitivity, concludes a research review in Pain, the official publication of the ...

Changing activity in the ageing brain

May 29, 2015

Normal ageing affects our ability to carry out complex cognitive tasks. But exactly how our brain functions change during this process is largely unknown. Now, researchers in Malaysia have demonstrated that ...

Networking neurons thrive in 3-D human 'organoid'

May 29, 2015

A patient tormented by suicidal thoughts gives his psychiatrist a few strands of his hair. She derives stem cells from them to grow budding brain tissue harboring the secrets of his unique illness in a petri ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.