Blocking blood vessel formation prevents brain tumor recurrence in mice

February 22, 2010

Patients with glioblastoma multiforme (GBM), an extremely aggressive brain tumor, have a very poor prognosis. Despite high dose radiotherapy, 75% of patients die within two years, usually as a result of tumor recurrence within the irradiation field. Martin Brown and colleagues, at Stanford University School of Medicine, have now provided insight into the mechanism of such recurrence by studying a mouse model of GBM in which a human GBM cell line was grafted into the brain of mice, thus highlighting potential new therapeutic approaches to the treatment of GBM.

Formation of new is an essential component of tumor recurrence. In the study, the authors found that in their GBM model, irradiation induced recruitment to the tumor site of cells able to facilitate blood vessel formation by a process known as vasculogenesis. Further analysis indicated that these cells were recruited by the soluble molecule SDF-1, which bound to the protein CXCR4 on the surface of the recruited cells. Importantly, disrupting the SDF-1/CXCR4 interaction prevented the recruitment of vasculogenic cells to the tumor site and thereby blocked postirradiation development of functional tumor vasculature, resulting in abrogation of tumor regrowth. The authors suggest that these data might be readily applicable to the clinic because a small molecule inhibitor of SDF-1/CXCR4 interactions is already clinically approved to obtain for transplantation.

In an accompanying commentary, Jeffrey Greenfield and David Lyden, at Weill Cornell Medical College, New York, discuss the importance of the study by Brown and colleagues and suggest that treatment for GMB should be tailored to target the specific blood vessel forming pathway operational at a given stage of disease.

Explore further: Brain discovery could fight deadly tumors

More information: View this article at:

Related Stories

Brain discovery could fight deadly tumors

July 19, 2007

MIT researchers have identified a critical link between two proteins found in brain tumors, a discovery that could eventually help treat a form of brain cancer that kills 99 percent of patients.

MRI: A window to genetic properties of brain tumors

March 24, 2008

Doctors diagnose and prescribe treatment for brain tumors by studying, under a microscope, tumor tissue and cell samples obtained through invasive biopsy or surgery. Now, researchers at UCSD School of Medicine have shown ...

New treatment to prevent cancer recurrence shows promise

February 22, 2010

Glioblastoma is one of the most deadly human brain cancers. Radiation can temporarily shrink a tumor, but they nearly always recur within weeks or months and few patients survive longer than two years after diagnosis.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.