New approach to treating breast and prostate cancers

February 9, 2010

In a new approach to developing treatments for breast cancer, prostate cancer and enlarged hearts, Loyola University Chicago Stritch School of Medicine researchers are zeroing in on a workhorse protein called RSK.

When activated, RSK is involved in cell survival, and cell enlargement. These properties contribute towards cancer progression, heart enlargement and tumors associated with a genetic disease called Carney complex. Loyola researchers have discovered that a binds to RSK. This regulatory protein effectively keeps RSK's activity in check.

In a study to be published in the , Patel and colleagues located the specific region of the regulatory protein that binds to RSK. The study was published online Jan. 4 in advance of print publication.

"The implications are widespread, and will also change textbooks for students," said Tarun Patel, PhD, chairman of the Department of Molecular Pharmacology & Therapeutics at Loyola University Chicago Stritch School of Medicine.

It was previously known that the regulatory protein that binds RSK is also associated with another enzyme known as PKA. PKA is critical in maintaining normal body functions including heart rate, contraction of the heart, blood pressure, hormone release, learning and memory. PKA also is involved in modulating tumor growth and progression. Because RSK and PKA compete for binding with the same regulatory protein, they end up modulating each other's activities.

These fundamental findings could point toward new approaches to developing drugs to keep RSK or PKA in check. Such drugs would, in effect, do the job of the regulatory protein. This could prove useful in treating conditions in which RSK is activated, such as breast and and heart enlargement.

Patel said this discovery is also of great importance for patients with Carney complex. Carney complex is an inherited disease that includes such symptoms as spotty skin pigmentation, benign or cancerous tumors of hormone-producing glands, and unusual benign tumors in the heart that can cause fatal heart attacks. Approximately 500 cases have been reported in the United States.

It's been known for years that Carney complex is associated with mutations that cause a deficiency of the regulatory protein that the Patel lab discovered binds to RSK. This would lead to activation of RSK in Carney complex patients and contribute to tumor growth. Currently there are no drugs to specifically treat Carney complex. Therefore, developing medications to inactivate RSK could prove to be an important new therapeutic approach for Carney complex patients.

Explore further: Study reveals the regulatory mechanism of key enzyme

Related Stories

Study reveals the regulatory mechanism of key enzyme

September 20, 2007

Research conducted at the University of California, San Diego (UCSD) School of Medicine has shed new light on the structure and function of one of the key proteins in all mammalian cells, protein kinase A (PKA), an enzyme ...

The beat goes on with AKAP18

September 28, 2007

A protein, known as AKAP18, could help the heart to beat faster in response to adrenaline or noradrenaline, according to a study published online this week in EMBO reports.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.