New computational tool for cancer treatment

January 29, 2010

Many human tumors express indoleamine 2,3-dioxygenase (IDO), an enzyme which mediates an immune-escape in several cancer types. Researchers in the Molecular Modeling group at the SIB Swiss Institute of Bioinformatics and Dr. Benoît J. Van den Eynde's group at the Ludwig Institute for Cancer Research Ltd (LICR) Brussels Branch developed an approach for creating new IDO inhibitors by computer-assisted structure-based drug design. The study was presented in the January 2010 online issue of the Journal of Medicinal Chemistry.

The docking algorithm EADock, used for this project, was developed by the Molecular Modeling Group over the last eight years. It provides solutions for the "lock-and-key" problem, wherein the protein active site is regarded as a "lock", which can be fitted with a "key" (usually a small ) able to regulate its activity. Once an interesting molecule has been obtained, synthesis and laboratory experiments are necessary to confirm or reject the prediction. This algorithm will soon be made available to the scientific community worldwide.

The scientists obtained a high success rate. Fifty percent of the molecules designed in silico were active IDO inhibitors in vitro. Compounds that displayed activities in the low micromolar to nanomolar range, made them suitable for further testing in tumor cell experiments and for in vivo evaluation in mice. If these studies are successful, scientists can begin evaluating these new compounds in patients undergoing cancer-immunotherapy.

According to Olivier Michielin, Assistant Member at the Lausanne Branch of LICR and leader of the SIB Swiss Institute of Bioinformatics group, "This is a satisfactory proof of principle showing that computational techniques can produce very effective inhibitors for specific targets with high yield. This is very encouraging for future drug developments in the academic environment."

Explore further: Inducing melanoma for cancer vaccine development

Related Stories

Inducing melanoma for cancer vaccine development

March 27, 2006

Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma. Although tumor regressions have been seen in 10% to 20% of patients with ...

Primary driver of stomach cancer development identified

April 23, 2008

In a discovery that could lead to the development of new treatments for gastric cancer, scientists at the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have discovered what appears to be ...

Synthetic Molecules Could Add Spice To Fight Against Cancer

August 18, 2008

Seeking to improve on nature, scientists used a spice-based compound as a starting point and developed synthetic molecules that, in lab settings, are able to kill cancer cells and stop the cells from spreading. The researchers ...

IDO2 an active enzyme to target in pancreatic cancer

December 1, 2008

An enzyme that is overexpressed in pancreatic cancer cells may hold the key to successfully treating the disease with targeted immunotherapy, researchers from Thomas Jefferson University reported at the 2008 Annual Meeting ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.