Grant to study how cells sense electric fields

Jan 26, 2010

Learning how living cells can detect and respond to electric fields is the aim of a $570,000, three-year grant from the National Science Foundation to Min Zhao, professor of dermatology and ophthalmology at the UC Davis Health System and Center for Neuroscience.

Living are already known to respond to electric fields, as well as being able to sense light, temperature and chemical signals. Understanding this mechanism would establish a new biological signaling mechanism, with implications for engineering tissues and wound healing as well as in basic science, Zhao said.

Zhao and colleagues will use the grant to generate hundreds of thousands of in the amoeba Dictyostelium discoideum. They will collaborate with Tingrui Pan, professor of biomedical engineering, to develop methods to quickly screen thousands of mutant amoebae for those that do not respond to electric fields. Those defective amoebae will allow the scientists to home in on the genes and molecules responsible.

Dictyostelium was selected for the study because it is the simplest cell to work with that also moves, Zhao said.

In previous work, Zhao and his collaborators found that wounds generate a weak that guides cells moving in to repair the wound.

"The big question is, how do the cells detect the electric field?" Zhao said. He believes that there is a molecule or set of molecules within cells that respond to electric fields.

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Researchers improve design of genetic on-off switches

Apr 07, 2005

Researchers at the University of Illinois at Urbana-Champaign have set a new standard in the design and engineering of nuclear hormone receptor-based genetic on-off switches, without causing new problems or aggravating existing ...

Student Creates Electric Tweezers

Aug 18, 2006

The ability to sort cells or manipulate microscopic particles could soon be in the hands of small laboratories, high schools and amateur scientists, thanks to researchers at the University of Pennsylvania School ...

Nanomaterials to Mimic Cells

Aug 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science ...

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.