Electric field propels worms to test new drugs

January 5, 2010
(a) The application of +8 V cm-1 electric field (E) caused an animal (724 µm long) to move with the speed of 308 µm s-1 to the right towards the cathode. (b) At a lower field strength in a reverse direction (-3 V cm-1) the animal (847.5 µm long) moved with a speed of 342 µm s-1 to the left towards the cathode. Dark thick arrows illustrate the worm's position. Scale bars are 1 mm. Credit: McMaster University

A Nobel-winning process for testing new drugs to treat diseases such as Huntington's, Parkinson's, and muscular dystrophy is getting an electrical charge.

Researchers at McMaster University have developed a way to propel and direct microscopic-sized (C. elegans nematodes) along a narrow channel using a mild electric field. The discovery opens up significant possibilities for developing high-throughput micro-screening devices for drug discovery and other applications.

"This is the first time that worms have been stimulated to move in a micro-channel device in a very precise and directed way," said Bhagwati Gupta, assistant professor of biology. "It will allow researchers to study in real time how a proposed drug affects neurons and muscles that control motion of a live specimen."

The research is described in the January 21, 2010 issue of , a leading international journal in the field of nanotechnology and bioengineering. The researchers demonstrate movement of the worms forward and in reverse inside a microchannel, guided by the direction of the electric field (electrotaxis).

"The electrotaxis of the worms has the potential to automate what is currently a slow, manual process for on worms," said Ravi Selvaganapathy, assistant professor of mechanical engineering. "The system is fairly easy and inexpensive to scale up to conduct rapid screening of tens of thousands of chemicals in worms to identify in a cost-effective manner. Such discovery could accelerate clinical trials in people by allowing scientists to focus only on relevant drugs and would use limited resources more efficiently."

Currently, researchers observe worms individually under a microscope as they move in a random manner or in a direction forced by pressure. The new development retains a worm's natural motion and causes no harm to the worm.

A surprising observation was that the response of the worms was dependent on its age and neuronal development. This allows for large numbers of worms to be sorted and handled in an automated manner.

The findings promise to impact other research areas as well. It will allow researchers to study how respond to electricity. It can also be used to fabricate new kinds of devices to handle and manipulate large numbers of worms.

The use of C. elegans as a genetic model organism was first undertaken by Sydney Brenner in 1974. He was presented with the Nobel Prize in Physiology or Medicine in 2002 for his work in this area. Researchers working with C. elegans were also awarded Nobel prizes in 2006 and 2008.

C. elegans is a proven animal model for the study of human diseases because it utilizes many of the same proteins and molecules as humans. It also has a generation time of approximately only four days and a lifespan of about two to three weeks. This accelerates the understanding of the function of disease-related proteins.

Explore further: Scientist explores secrets to life through worms

Related Stories

Scientist explores secrets to life through worms

October 17, 2008

Who would have thought that worms found in your composter - only seen with a microscope - could be used to study genetic disorders in humans? With 700 million years of separation and roughly half of its genes similar to humans, ...

Live-animal nerve regeneration study gets a boost

April 11, 2008

An MIT team has improved upon its landmark technology reported last year in which the researchers used a fingernail-sized lab on a chip to image, perform surgery on and sort tiny worms to study nerve regeneration.

Pinhead-size worms + robot = new antibiotics

August 5, 2009

In an advance that could help ease the antibiotic drought, scientists in Massachusetts are describing successful use of a test that enlists pinhead-sized worms in efforts to discover badly needed new antibiotics. Their study ...

New devices to boost nematode research on neurons and drugs

February 6, 2008

A pair of new thin, transparent devices, constructed with soft lithography, should boost research in which nematodes are studied to explore brain-behavior connections and to screen new pharmaceuticals for potential treatment ...

Worms control lifespan at high temperatures

April 16, 2009

The common research worm, C. elegans, is able to use heat-sensing nerve cells to not only regulate its response to hotter environments, but also to control the pace of its aging as a result of that heat, according to new ...

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.