Chromosomes make a rapid retreat from nuclear territories

January 13, 2010

Chromosomes move faster than we first thought. Research published in BioMed Central's open access journal, Genome Biology, details new findings about the way chromosomes move around the nucleus when leaving the proliferative stage of the cell cycle and entering quiescence - and the unexpected speed at which they move.

Researchers from Brunel University's Institute for Genetics and Pharmacogenomics have been trying to understand how human occupy different territories at different stages of the cell cycle. It was already known that some chromosomes move from a characteristic non-random distribution during quiescence to an alternative distribution during the proliferative stage of cell growth, and that this migration can take up to 36 hours. The movements are thought to be necessary in order to place chromosomes with more active genes in an optimal position for transcription. However, this new research shows that in the other direction, from proliferation to quiescence, chromosomal territory reorganisation is surprisingly speedy.

Research leader, Joanna Bridger said, "Excitingly, we found that chromosome repositioning was very rapid and complete within 15 minutes". Primary human fibroblast quiescence was induced by starving the cells of serum. Then, by using 2D-FISH imaging analysis to map the chromosome territory locations of all 22 autosomes plus the two , a possible mechanism for this rapid movement was unearthed. Knowing that actin and myosin motors are involved in chromosome migration during mitosis, Bridger and her team inhibited the polymerisation of these two proteins and sure enough found that the chromosomes stayed put.

Bridger continues, "These data imply that rapid as they respond to a removal of growth factors is due to an energy-driven process involving a nuclear actin: myosin motor function". Further work involving cells transfected with siRNA to block the transcription of nuclear myosin 1ß reveals that this isoform of the protein is the most likely candidate for significant involvement in chromosomal territory reorganisation.

Explore further: Researchers shed light on shrinking of chromosomes

More information: Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts, Ishita S Mehta, Manelle Amira, Amanda J Harvey and Joanna M Bridger, Genome Biology (in press), genomebiology.com/

Related Stories

Researchers shed light on shrinking of chromosomes

June 11, 2007

A human cell contains an enormous 1.8 metres of DNA partitioned into 46 chromosomes. These have to be copied and distributed equally into two daughter cells at every division. Condensation, the shortening of chromosomes, ...

Double identities lie behind chromosome disorders

July 8, 2007

Chromosome disorders in sex cells cause infertility, miscarriage and irregular numbers of chromosomes (aneuploidy) in neonates. A new study from Karolinska Institutet published in the scientific journal Nature Genetics shows ...

X chromosome exposed

May 29, 2008

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. ...

Researchers identify potential cancer target

January 16, 2009

(PhysOrg.com) -- Dartmouth Medical School researchers have found two proteins that work in concert to ensure proper chromosome segregation during cell division. Their study is in the January 2009 issue of the journal Nature ...

Slicing chromosomes leads to new insights into cell division

May 29, 2009

(PhysOrg.com) -- By using ultrafast laser pulses to slice off pieces of chromosomes and observe how the chromosomes behave, biomedical engineers at the University of Michigan have gained pivotal insights into mitosis, the ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.