New finding may help baby boomers get buff

January 4, 2010

If you're an aging baby boomer hoping for a buffer physique, there's hope. A team of American scientists from Texas and Michigan have made a significant discovery about the cause of age-related muscle atrophy that could lead to new drugs to halt this natural process. This research, available online the FASEB Journal, shows that free radicals, such as reactive oxygen species, damage mitochondria in muscle cells, leading to cell death and muscle atrophy. Now that scientists understand the cause of age-related muscle loss, they can begin to develop new drugs to halt the process.

"Age-related in skeletal muscle is inevitable. However, we know it can be slowed down or delayed," said Holly Van Remmen, Ph.D., co-author of the study, from the Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio. "Our goal is to increase our understanding of the basic mechanisms underlying sarcopenia to gain insight that will help us to discover therapeutic interventions to slow or limit this process."

To make this discovery, Van Remmen and colleagues used mice that were genetically manipulated to prevent them from having a protective antioxidant (CuZnSOD). As a result of not being able to produce this antioxidant, the mice had very high levels of free radicals (reactive oxygen species) and lost muscle mass and function at a much faster rate than normal mice. Additionally, the muscles of the genetically modified mice were much smaller and weaker than those of normal mice. Scientists believe that these findings mimic effects of the normal aging process in humans, but at an accelerated rate.

"I don't expect to see gracing the pages of body building magazines tomorrow. But this research is important because it identifies molecules responsible for the aging of our muscles: ," said Gerald Weissmann, M.D., Editor-in-Chief of the . "Stop these from acting and we'll all look younger, stronger and fit at any age.

Explore further: Fighting diseases of aging by wasting energy

More information:

Related Stories

Fighting diseases of aging by wasting energy

December 4, 2007

By making the skeletal muscles of mice use energy less efficiently, researchers report in the December issue of Cell Metabolism, a publication of Cell Press, that they have delayed the animals’ deaths and their development ...

New insight into factors that drive muscle-building stem cells

January 8, 2008

A report in the January issue of Cell Metabolism, a publication of Cell Press, provides new evidence explaining how stem cells known as satellite cells contribute to building muscles up in response to exercise. These findings ...

Muscle atrophy through thick but not thin

June 8, 2009

During desperate times, such as fasting, or muscle wasting that afflicts cancer or AIDS patients, the body cannibalizes itself, atrophying and breaking down skeletal muscle proteins to liberate amino acids. In a new study ...

Bad mitochondria may actually be good for you

July 22, 2009

Mice with a defective mitochondrial protein called MCLK1 produce elevated amounts of reactive oxygen when young; that should spell disaster, yet according to a study in this week's JBC these mice actually age at a slower ...

To keep muscles strong, the 'garbage' has to go

December 1, 2009

In order to maintain muscle strength with age, cells must rid themselves of the garbage that accumulates in them over time, just as it does in any household, according to a new study in the December issue of Cell Metabolism. ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.