New research findings may help stop age-related macular degeneration at the molecular level

January 4, 2010

Researchers at University College London say they have gleaned a key insight into the molecular beginnings of age-related macular degeneration, the No. 1 cause of vision loss in the elderly, by determining how two key proteins interact to naturally prevent the onset of the condition.

In a paper to be published in a forthcoming issue of the , the team reports for the first time how a common blood protein linked to the eye condition reins in another protein that, when produced in vastly increased amounts in the presence of inflammation or infection, can damage the eye.

"By starting to understand these interactions in greater detail, we can begin to devise methods that will ultimately prevent the development of blindness in the elderly," said Zuby Okemefuna, the lead author of the paper to be published Jan. 8.

Age-related , or AMD, is painless but affects the macula, the part of the retina that allows one to see fine detail. One form of the debilitating condition, known as "wet" AMD, occurs when abnormal and fragile blood vessels grow under the macula, leaking blood and fluid and displacing and damaging the macula itself. The second form, "dry" AMD, occurs when light-sensitive cells in the macula slowly break down.

It is believed that both forms start on a common molecular route and then deviate into dry or wet AMD, explained the research leader, Steve Perkins.

"The earliest hallmark of AMD is the appearance of protein, lipid and deposits under the epithelial cells," he said, adding that the yellowish deposits, usually discovered by an ophthalmologist, are commonly known as "drusen."

The researchers studied two proteins involved in drusen formation -- blood protein Factor H and a second known as C-reactive protein -- and showed that Factor H binds to C-reactive protein when C-reactive protein is present in large amounts, as in the case of infection, to reduce the potentially damaging effects of an overactive immune system.

"In the eye, during the normal processes of aging, cells will die naturally for all sorts of reasons," Okemefuna said. "The blood supply to the eye will bring C-reactive protein with it, and a low level of C-reactive protein activity will enable the normal processes of clearance of dead cells at the retina through mild inflammation. In conditions of high inflammation, the levels of C-reactive protein in the retina will increase dramatically."

Uncontrolled C-reactive protein activity causes damage to the retina, which is followed by more inflammation and then even more damage to the retina, and so forth.

"It's the debris of broken up retinal cells, some of which is caused by this cycle, that is deposited as drusen," Okemefuna said.

The team also found that a genetically different form of Factor H does not bind to the C-reactive protein quite as well as the normal one, making people who carry the modified protein more vulnerable to an immune system attack in the eye and, thus, drusen buildup.

"In normal individuals, further damage to the by prolonged exposure to high levels of C-reactive
protein is prevented by Factor H. C-reactive protein also prevents Factor H from clumping together and initiating the processes that lead to drusen formation," Perkins said. "Both these 'good' activities of Factor H are much reduced in the genetically different form of Factor H."

While there is no known cure for AMD, existing therapies aim to treat the symptoms and delay progression.

"It is interesting how the interaction of these two blood proteins protects the eye during crisis," Perkins said. "The two proteins also can be involved in a rare and often fatal cause of kidney failure in children. We now are better positioned to begin to work out preventative strategies for these diseases."

Explore further: Lasers not effective against vision loss

Related Stories

First gene associated with dry macular degeneration found

August 27, 2008

In a study that underscores the important role that individual genetic profiles will play in the development of new therapies for disease, a multi-institutional research team – led by Kang Zhang, MD, PhD professor of ophthalmology ...

Study suggests new approach to common cause of blindness

June 14, 2009

Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.