Scientists observe super-massive black holes using Keck Observatory in Hawaii

December 10, 2009
UKIRT infrared images of the four target galaxies show them in near-infrared color, where the images at different infrared wavelengths are assigned to represent red, green and blue colors. Observations with the Keck Interferometer have resolved the inner structure of the bright nucleus in all the four galaxies. The inferred ring-like structure obtained for NGC 4151 at the top-left is depicted in the top-right panel. The ring radius is 0.13 light years, corresponding to an extremely small ~0.5 milli-arcsecond angular size on the sky. The distance to each galaxy is indicated in million light-years, together with the redshift (z) of each galaxy. Credit: M. Kishimoto, MPIfR

An international team of scientists has observed four super-massive black holes at the center of galaxies, which may provide new information on how these central black hole systems operate. Their findings are published in December's first issue of the journal Astronomy and Astrophysics.

These super-massive black holes at the center of galaxies are called . For the first time, the team observed a quasar with an active , as part of the group of four, which is located more than a billion light years from Earth. The scientists used the two Keck telescopes on top of Mauna Kea in Hawaii. These are the largest optical/infrared telescopes in the world.

The team also used the United Kingdom (UKIRT) to follow up the Keck observations, to obtain current near-infrared images of the target galaxies.

"Astronomers have been trying to see directly what exactly is going on in the vicinity of these accreting super-massive black holes," said co-author Robert Antonucci, a UC Santa Barbara astrophysicist.

He explained that the nuclei of many galaxies show intense radiation from X-ray to optical, infrared, and radio, where the nucleus may exhibit a strong jet -- a linear feature carrying particles and magnetic energy out from a central super-massive black hole. Scientists believe these active nuclei are powered by accreting super-massive black holes. The accreting gas and dust are especially bright in the optical and infrared regions of the electromagnetic spectrum.

Scientists can now separate the emission from the regions outside the black hole from that in the very close vicinity of the black hole. This is the location of the most interesting physical process, the actual swallowing of matter by the black hole. "While not resolving this extremely small region directly, we can now better subtract the contribution from surrounding matter when we take a spectrum of the black hole and its surroundings, isolating the spectrum from the matter actually being consumed and lost forever by the hole," said Antonucci.

To observe such a distant object sharply enough in infrared wavelengths requires the use of a telescope having a diameter of about 100 meters or more. Instead of building such a large infrared telescope, which is currently impossible, a more practical way is to combine the beams from two or more telescopes that are roughly 100 meters apart. This method, used in radio astronomy for decades, is new for the infrared part of the spectrum. This type of instrument is called a long-baseline interferometer.

The Keck telescopes are separated by 85 meters and can be used as an interferometer. Combining the light from the telescopes allows astronomers to detect an interference pattern of the two beams and infer what the black hole vicinity looks like, explained first author Makoto Kishimoto, of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Kishimoto and Antonucci have a longstanding research collaboration, which began with Kishimoto's post-doctoral fellowship with Antonucci in the UCSB Department of Physics a decade ago. Antonucci points out that most of the credit for this current work goes to Kishimoto.

In 2003, astronomer Mark Swain at the Jet Propulsion Laboratory and his collaborators used the Keck Interferometer to observe the material accreting around one super-massive black hole, called NGC 4151. This is one of the brightest in the optical and infrared wavelengths. The observations provided astronomers with the first direct clue about the inner region of a super-massive black hole system, said Antonucci.

"The results looked puzzling in 2003," said Kishimoto. "But with the new data and with more external information, we are quite sure of what we are seeing." According to the team's results, the Keck Interferometer has just begun to resolve the outer region of an active galactic nucleus's accreting gas, where co-existing dust grains are hot enough to evaporate, transitioning directly from a solid to a gas.

Source: University of California - Santa Barbara (news : web)

Explore further: Galaxy Collision Switches on Black Hole

Related Stories

Galaxy Collision Switches on Black Hole

December 10, 2009

( -- This composite image of data from three different telescopes shows an ongoing collision between two galaxies, NGC 6872 and IC 4970.

Recommended for you

Orbiter views Mars surface fractures

October 8, 2015

The High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter often takes images of Martian sand dunes to study the mobile soils. These images provide information about erosion and ...

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (4) Dec 10, 2009
Scientists have NOT observed black holes.

AGN (active galactic nuclei) are massive neutron stars powered by repulsive interactions between neutrons.

With kind regards,
Oliver K. Manuel
Former NASA PI for Apollo

5 / 5 (1) Dec 11, 2009
Using optical interferometry to observe active galactic nuclei is a relatively new (and complicated) technique. But the payoff, as seen here, may lead to a better understanding of how our universe works. Coupled with other observations at other wavelengths, scientists are poised to get their best views yet of the inner accretion disks of supermassive black holes.

Planning has also begun to directly image the event horizon of the SMBH Sgr A* in our own galaxy using submillimeter wavelength interferometry. Possibly in the next ten years this ambitious goal will be achieved. Details here: .
5 / 5 (1) Dec 11, 2009
Scientists have NOT observed neutron stars, especially billion solar mass neutron stars.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.