Nanoparticles go platinum: NCEM instruments provide key images

December 21, 2009 by Lynn Yarris
This STEM image, obtained using NCEM’s Tecnai at a resolution of 0.14 nanometers, shows the platinum particles (white dots) and their locations on carbon nanotubes and DNA strands.

At Berkeley Lab's National Center for Electron Microscopy it was revealed that single-stranded DNA can disperse bundles of single-walled carbon nanotubes into individual tubes and serve as guideposts for synthesizing platinum nanoparticles onto these tubes.

Berkeley Lab’s National Center for Electron Microscopy (NCEM) provided the technology and a Visiting Scientist Fellowship that helped a Missouri State University researcher make a key discovery which should boost efforts to use carbon nanotubes as catalytic supports in direct ethanol fuel cells. Using the advanced characterization capabilities of NCEM’s TEAM 0.5 and Tecnai microscopes, materials scientist Lifeng Dong found that single-stranded DNA can be used to disperse bundles of single-walled carbon nanotubes into individual tubes. The single strands of DNA can also serve as guideposts for synthesizing platinum onto these tubes.

“Without the Visiting Scientist Fellowship from NCEM, I would not have had the opportunity to work with NCEM scientists and to use state-of-the-art microscopes to characterize those samples,” Dong wrote in a letter to NCEM director Uli Dahmen. Dong acquired his images at TEAM 0.5 and the 200 kV Tecnai with the help of Berkeley Lab staff at NCEM including Christian Kisielowski, Thomas Duden, Masashi Watanabe, Zonghoon Lee and ChengYu Song.

The TEM image in (a) shows platinum nanoparticles (black specks) on a bundle of single-walled carbon nanotubes. Under higher magnification in (b), the nanotubes start to separate from one another and the configuration of the platinum particles (dashed circles) along the nanotubes is revealed.

Portable fuel cells powered directly by ethanol have the potential to be far more efficient than ethanol-powered combustion engines and far more practical than hydrogen fuels cells, as ethanol is easier to store and transport than hydrogen. What’s been missing for the production of direct ethanol fuel cells is a good catalyst for oxidizing ethanol.

Platinum-coated single-walled carbon nanotubes (SWCNTs) show bright promise for this task because of their high electronic conductivity and surface area. However, it is the nature of these single-walled nanotubes to form bundles. For them to be effectively used as supporters of platinum catalysts in direct ethanol fuel cells, efficient ways must be found to separate bundled SWCNTs into individual tubes and to synthesize platinum nanoparticles on the nanotubes.

“Our images show that platinum nanoparticles selectively grow on carbon nanotubes in accordance with single-stranded DNA locations,” Dong says. “The DNA molecules not only effectively disperse SWCNT bundles into individual tubes, but also provide an address for the formation of nanoparticles along the nanotube surfaces. This suggests a method to synthesize other types of carbon nanotube-supported nanoparticles, such as palladium and gold, for applications in fuel cells and nanoscale electronics.”

The acronym TEAM stands for Transmission Electron Aberration-corrected Microscope. TEAM 0.5 is capable of producing images with a resolution of one-half angstrom, which is less than the diameter of a single hydrogen atom. TEAM 0.5 also has the ability to correct for the image-degrading phenomenon known as spherical aberration. The 200kV Tecnai microscope is optimized for materials research that requires either the highest resolution scanning transmission performance, meaning imaging and spectroscopy, or correlated imaging and analytical methods.

“The biggest challenge for obtaining these images was that our microscopes remain stable at their top performance levels,” says NCEM staff member Song, who provides support for the 200 kV Tecnai microscope. “As we image a sample at the atomic scale, any instability in the microscope is magnified millions of times with the image. At NCEM we routinely check the performances of our microscopes and look after any optical, mechanical, or electrical disturbances.”

Explore further: Cells selectively absorb short nanotubes

Related Stories

Cells selectively absorb short nanotubes

March 30, 2007

DNA-wrapped single-walled carbon nanotubes (SWCNTs) shorter than about 200 nanometers readily enter into human lung cells and so may pose an increased risk to health, according to scientists at the National Institute of Standards ...

TEAM Project Achieves Microscopy Breakthrough

September 6, 2007

The highest-resolution images ever seen in (S)TEM electron microscopy have been recorded using a new instrument developed jointly by U.S. Department of Energy national laboratories, FEI Company and CEOS GmbH, in Heidelberg, ...

New Catalyst Paves the Path for Ethanol-Powered Fuel Cells

January 26, 2009

( -- A team of scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in collaboration with researchers from the University of Delaware and Yeshiva University, has developed a new ...

Carbon Nanotubes Make Fuel Cells Cheaper

February 9, 2009

( -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious metal platinum ...

A recipe for controlling carbon nanotubes

September 20, 2009

Nanoscopic tubes made of a lattice of carbon just a single atom deep hold promise for delivering medicines directly to a tumor, sensors so keen they detect the arrival or departure of a single electron, a replacement for ...

A Search for Stability for Platinum Catalysts

December 17, 2009

( -- A new carbon support that greatly increases the durability of proton-exchange membrane fuel cells has been developed by scientists at Pacific Northwest National Laboratory and Princeton University. This new ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.