Highlight: Solar - Bridging the gap

December 10, 2009

(PhysOrg.com) -- Titanium dioxide, the same inexpensive white pigment that protects us from sunburns, can be converted into a material that absorbs sunlight and could greatly increase the efficiency of solar energy cells.

Until now, however, researchers had not been able to overcome the inherent wide band gap associated with the different energy levels, or bands, of the electrons. This limits the material to absorbing only ultraviolet light and results in less than 1 percent conversion efficiency.

In a paper published by a multi-institutional team that includes theorist Zhenyu Zhang and experimentalist Gyula Eres of Oak Ridge National Laboratory, the researchers report on a conceptually novel doping method that can tune the band gap of titanium oxide to capture the more abundant visible component of the solar spectrum.

This innovation to a large extent removes what has been a major materials barrier to the better utilization of the sun's energy and, in terms of cost and efficiency, has huge implications for future .

This research, published in , was funded by the Department of Energy's Office of Basic Sciences and the Laboratory Directed Research and Development program.

More information: Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity, Phys. Rev. Lett. 103, 226401 (2009); DOI:10.1103/PhysRevLett.103.226401

Provided by Oak Ridge National Laboratory (news : web)

Explore further: Porphyrin Dimers Increase Efficiency of Dye-Sensitized Solar Cells

Related Stories

Recommended for you

A particle purely made of nuclear force

October 13, 2015

Scientists at TU Wien (Vienna) have calculated that the meson f0(1710) could be a very special particle – the long-sought-after glueball, a particle composed of pure force.

Team extends the lifetime of atoms using a mirror

October 13, 2015

Researchers at Chalmers University of Technology have succeeded in an experiment where they get an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.