Highlight: Exploiting strain fields

Dec 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

In a letter published in Nature Physics, lead author Thomas "Zac" Ward of Oak Ridge National Laboratory describes how electronic phase separation can be controlled through strain fields in a material. A strain field is one in which the material is stretched more in one direction than another.

"By doing this, we can force metallic regions to spontaneously form along the direction of stretching," Ward said. "This means that along the stretched direction the resistance is low while along the unstretched direction the resistance is very high."

Ward and co-authors John Budai, Zheng Gai, Jonathan Tischler, Lifeng Yin and Jian Shen cite differences in in some cases reaching 20,000 percent.

"Practically, this discovery means that we are closer to controlling complex electronic correlations that could one day revolutionize the in the form of new multi-functional, lower energy-consuming devices," Ward said. This research was funded by the Department of Energy's Office of Basic Energy Sciences.

More information: Elastically driven anisotropic percolation in electronic phase-separated manganites, Nature Physics 5, 885 - 888 (2009), doi:10.1038/nphys1419

Provided by Oak Ridge National Laboratory (news : web)

Explore further: To conduct, or to insulate? That is the question

Related Stories

Lighting the Way to Better Nanoscale Films

Aug 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may ...

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

How oversized atoms could help shrink

Jul 01, 2015

"Lab-on-a-chip" devices – which can carry out several laboratory functions on a single, micro-sized chip – are the result of a quiet scientific revolution over the past few years. For example, they enable ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.