Highlight: Exploiting strain fields

December 10, 2009

(PhysOrg.com) -- Electronic devices of the future may benefit from a fundamental discovery that allows researchers to customize the electronic properties of complex materials such as single-crystal thin-film structures.

In a letter published in Nature Physics, lead author Thomas "Zac" Ward of Oak Ridge National Laboratory describes how electronic phase separation can be controlled through strain fields in a material. A strain field is one in which the material is stretched more in one direction than another.

"By doing this, we can force metallic regions to spontaneously form along the direction of stretching," Ward said. "This means that along the stretched direction the resistance is low while along the unstretched direction the resistance is very high."

Ward and co-authors John Budai, Zheng Gai, Jonathan Tischler, Lifeng Yin and Jian Shen cite differences in in some cases reaching 20,000 percent.

"Practically, this discovery means that we are closer to controlling complex electronic correlations that could one day revolutionize the in the form of new multi-functional, lower energy-consuming devices," Ward said. This research was funded by the Department of Energy's Office of Basic Energy Sciences.

More information: Elastically driven anisotropic percolation in electronic phase-separated manganites, Nature Physics 5, 885 - 888 (2009), doi:10.1038/nphys1419

Provided by Oak Ridge National Laboratory (news : web)

Explore further: Lighting the Way to Better Nanoscale Films

Related Stories

Lighting the Way to Better Nanoscale Films

August 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may provide a cheaper ...

Putting a Strain on Nanowires Could Yield Colossal Results

September 17, 2009

(PhysOrg.com) -- In finally answering an elusive scientific question, researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the selective placement of strain ...

Recommended for you

Quantum computing will bring immense processing possibilities

September 2, 2015

The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.