Researchers Create New Way To Locate Big Genetic Variants

Dec 28, 2009

(PhysOrg.com) -- Yale University researchers, analyzing hundreds of billions of bits of genetic information, have collated and standardized 2,000 signposts that mark the boundaries of large blocks of human genomic variants.

This library of genomic “breakpoints’’ was published in the Dec. 27th edition of .

sequencing, or the ordering of the billions of nucleotides that make up the genomes of living organisms, has been a key tool in modern biological research. The quest for variants that change the function of genes began by first focusing on changes, called single (SNPs) in a single genetic letter (or nucleotide). Advances in sequencing technology now enable scientists to decode the genome more rapidly and efficiently, and have paved the way for identifying large block variants, called structural variants or SVs.

These variants cause more nucleotide differences between individuals than SNPs. Some SVs, in fact, involve thousands of base pairs and can wipe out whole genes or create additional copies of other genes that can have major effects on an organism. SVs are sometimes associated with diseases such as cancer and HIV and also with developmental disorders.

Graduate students Hugo Lam and Jasmine Mu and their colleagues in the research team led by Mark Gerstein, professor of molecular biophysics and biochemistry, computer science, and bioinformatics, analyzed data from recent personal genomic studies, such as the 1000 Genomes Project, to identify precise “breakpoint” locations of SVs.

They have shown how this library of breakpoints can help researchers rapidly scan for and characterize SVs in a newly sequenced personal genome. In fact, the sequences in the library can even be put on a commercial SNP chip, which can then be used to assess SVs quickly in population studies.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Johns Hopkins to participate in 1000 Genomes Project

Jan 22, 2008

Researchers at the McKusick-Nathans Institute of Genetic Medicine (IGM) at Johns Hopkins will join other national and international scientists in the 1000 Genomes Project, an ambitious effort that will involve sequencing ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.