2 heads better than 1 in new antibiotic method

December 3, 2009

An antibiotic that binds to a well-established target in a novel and unexpected way could be the inspiration for designing new, more potent antibacterial drugs.

"A completely new way to beat is an exciting find at a time when resistance to existing antibiotics is growing," said Professor Tony Maxwell from the John Innes Centre, lead author on the research to be published in Science. JIC is an institute of the BBSRC.

The antibiotic molecule slots into pockets in the surface of a , DNA gyrase, and inhibits its activity. Gyrase is essential for bacteria to survive and grow. However, it is not present in humans so is an ideal, and already established, target for antibiotics.

"If you can knock out this enzyme, you have a potential new drug," says Prof Maxwell.

The molecule has two heads that dock into separate pockets in DNA gyrase, and together they are 100 times more powerful than when working individually. Neither pocket has previously been exploited by antibacterial drugs that target this enzyme. Although bacteria could develop resistance to this mode of action, it might be occur less readily than with other .

"The fact that there are two pockets means that it might require simultaneous mutations in both pockets for the bacteria to acquire full resistance to the drug, which is much less likely," explains Professor Maxwell.

"You could say that this is a case of two heads being better than one."

The antibiotic molecule, simocyclinone D8 (SD8), is a currently unexploited natural product made by soil bacteria. SD8 itself does not easily penetrate bacterial cells, but it raises the possibility of finding other molecules that fit into the binding pockets, or designing molecules that work by this mechanism but that penetrate cells more easily.

The current method of discovery is to screen protein targets or bacteria against vast libraries of compounds. Any hits are investigated in more detail.

The research reported in Science is a big advance as the scientists already know in detail how the molecule works. It can now be modified, or new compounds developed, to design new drugs.

Source: Norwich BioScience Institutes

Explore further: Decoy makes sitting duck of superbugs

Related Stories

Decoy makes sitting duck of superbugs

December 4, 2007

Scientists from the John Innes Centre have proven that by taking a short stretch of DNA from a bacterium and delivering it with an existing antibiotic they can switch off antibiotic resistance.

The structure of resistance

February 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Energy-saving bacteria resist antibiotics

September 3, 2008

Bacteria save energy by producing proteins that moonlight, having different roles at different times, which may also protect the microbes from being killed. The moonlighting activity of one enzyme from the tuberculosis bacterium ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.