Scientists obtain clearer view of how eye lens proteins are sorted

November 3, 2009

New research reveals how proteins that are critical for the transparency of the eye lens are properly sorted and localized in membrane bilayers. The study, published by Cell Press in the November 3rd issue of Biophysical Journal, analyzes how interactions between lipid and protein molecules can selectively concentrate proteins in certain regions of the cell membrane.

All cells are surrounded by a dynamic semi-permeable structure called the plasma membrane. Cell plasma membranes are made of a thin bilayer of lipids interspersed with a diverse complement of proteins. Research has shown that the lipids and proteins are not randomly distributed across the plasma membrane. Instead, functional microdomains or "rafts" are enriched for certain lipids and proteins. Although raft sequestration of many classes of lipids and proteins has been extensively studied, mechanisms for sorting proteins that span the membrane to form channels are not as well understood.

Dr. Thomas J.McIntosh from the Department of Cell Biology at Duke University Medical Center and his colleagues were interested in examining whether the plasma membrane distribution of the major channel proteins depends on how they are sorted between raft and non-raft microdomains. "We already knew that lens cell plasma membranes contain high concentrations of the raft lipids cholesterol and sphingomyelin, and that rafts form in lens membranes," says Dr. McIntosh. "In addition, we knew that lens channel proteins, connexins and aquaporin, are preferentially located in different regions of lens cell plasma membranes."

Using both detergent extraction and confocal microscopy to analyze reconstituted membranes, the researchers discovered that lens connexins were primarily located in non-raft domains. In contrast, the microdomain location of aquaporin depended on its aggregation status, which was controlled by the protein: lipid ration in the membrane. Specifically, under conditions where aquaporin molecules are known to cluster together (homo-oligomerize), aquaporin was enriched in non-raft domains.

"Our observation that sequestration of aquaporin into raft microdomains was markedly increased under conditions where homo-oligomerization was observed supports the theory that clustering might modify microdomain sorting," offers Dr. McIntosh. "Taken together, our data suggest that protein-lipid interactions, as modified by aquaporin homo-oligomerization, can be a key factor in the sorting of proteins in cell membranes."

Source: Cell Press (news : web)

Explore further: Macromolecules on surface control mobility in phospholipid bilayers

Related Stories

Chemists get grip on slippery lipids

August 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

How neuronal activity leads to Alzheimer's protein cleavage

October 20, 2008

Amyloid precursor protein (APP), whose cleavage product, amyloid-b (Ab), builds up into fibrous plaques in the brains of Alzheimer's disease patients, jumps from one specialized membrane microdomain to another to be cleaved, ...

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.