Nanostructured Integrated Circuit Detects Type and Severity of Cancer

November 3, 2009

(PhysOrg.com) -- A team of investigators from the University of Toronto have used nanomaterials to develop an inexpensive microchip sensitive enough to quickly determine the type and severity of a patient's cancer so that the disease can be detected earlier for more effective treatment. Their work, reported in two papers published in the journals ACS Nano and Nature Nanotechnology, could herald an era when inexpensive yet sophisticated molecular diagnostics will become commonplace.

The researchers' new device can readily detect the signature biomarkers that indicate the presence of cancer at the cellular level, even though these biomolecules - genes that indicate aggressive or benign forms of the disease and differentiate subtypes of the cancer - are generally present only at low levels in biological samples. Analysis can be completed in 90 minutes, a significant improvement over the existing diagnostic procedures that generally take days.

"Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren't quickly available," said team co-leader Shana Kelley. "Our team was able to measure biomolecules on an electronic chip the size of your fingertip and analyse the sample within half an hour. The instrumentation required for this analysis can be contained within a unit the size of a BlackBerry."

The nanoelectrode device that Kelley, collaborator Edward Sargent, and their students created is able to detect disease-related genes without the use of PCR to amplify low-level DNA. The electrodes, which are the key component of the device, have a novel highly-branched nanostructured shape that can detect attomolar concentrations of DNA. Using arrays of electrodes, each differing in the degree of nanostructured branching, the investigators were able to construct a device capable of sensing DNA molecules over six orders of magnitude, overcoming the dynamic range issue - the ability to detect both common and rare molecules - that has plagued other devices.

The investigators fabricated these devices using a standard production process known as photolithography to create the basic electrode grid needed to measure multiple biomarkers simultaneously, and then used a second technique known as electrodeposition to grow the branched nanostructures on the electrodes, controlling the size of each electrode by varying the time over which electrodeposition occurred. With the electrodes in place, the investigators then coated them with various DNA-binding molecules known as peptide-nucleic acids, or PNAs, that can be designed to bind to a specific gene sequence. When a piece of DNA binds to its complementary DNA or RNA molecule, it triggers a chemical reaction that alters the electrical signal generated by the associated .

Using their device, the investigators analyzed messenger RNA samples from prostate cancer biopsies. Their analysis showed that the device can detect gene fusions characteristic of prostate cancer. More importantly, the device was able to distinguish between gene fusions associated with either fast- or slow-growing forms of prostate cancer.

The paper describing the construction of this nanobiosensor is titled, "Programming the detection limits of biosensors through controlled nanostructuring." An abstract of this paper is available at the journal's Web site.

The paper detailing the use of the nanobiosensor to detect and characterize cancers is titled, "Direct Profiling of in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit." An abstract of this paper is available at the journal's Web site.

Provided by National Institute (news : web)

Explore further: Carbon Nanotube Network Detects DNA Without Labels

Related Stories

Carbon Nanotube Network Detects DNA Without Labels

February 3, 2006

Using a microchip device constructed with carbon nanotubes, researchers at the University of Pittsburgh and Nanomix, Inc., in Emeryville, CA, have developed a rapid method of detecting specific DNA sequences, including single-base ...

Evaluating Multiple Biomarkers With Quantum Dots

May 22, 2007

Quantum dots linked to biological molecules, such as antibodies, have shown promise as a new tool for detecting and quantifying a wide variety of cancer-associated molecules. Now, thanks to detailed studies of how to make ...

Carbon Nanotubes Detect Lung Cancer Markers in the Breath

November 20, 2008

(PhysOrg.com) -- Using an array of nanotube devices, each coated with a different organic material, researchers at the Israel Institute of Technology have developed diagnostic system that may be able to diagnose lung cancer ...

Microfluidic Devices Capture and Analyze Single Cancer Cells

January 16, 2009

(PhysOrg.com) -- One of the grand goals in nanotechnology is to develop a single microfluidic device that integrates all of the components needed to perform polymerase chain reaction (PCR)-based nucleic acid analyses. Experts ...

Microchip can detect type and severity of cancer

September 28, 2009

(PhysOrg.com) -- University of Toronto researchers have used nanomaterials to develop a microchip sensitive enough to quickly determine the type and severity of a patient's cancer so that the disease can be detected earlier ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.