Study finds lack of VEGF can cause defects similar to dry macular degeneration

November 2, 2009

Scientists at Schepens Eye Research Institute have found that when the eye is missing a diffusible form of vascular endothelial growth factor (VEGF), i.e. one that when secreted can reach other cells at a distance, the retina shows defects similar to "dry" macular degeneration, also called geographic atrophy (GA). This finding, published in the November 3, 2009 print edition of PNAS (Proceedings of the National Academy of Sciences), not only increases the understanding of the causes of this blinding disease, but it may also impact the use of anti-VEGF drugs, such as Lucentis, which are designed to neutralize VEGF in eyes with "wet" macular degeneration.

"These results are significant for several reasons. We know little about what causes GA or how to treat it. Our discovery may be an important piece of the puzzle. It shows that reduced VEGF from the retinal pigment epithelium (RPE), RPE, the bottommost layer of the , to the choriocapillaris (CC) - the small beneath retina-- leads to degeneration of the CC. Therefore, the continuous blockage of VEGF may contribute to the development of or a worsening of GA," says Patricia D'Amore, principal investigator of the study and senior scientist at Schepens.

VEGF is a protein that stimulates the growth of new blood vessels. The eye produces several different forms of VEGF that differ in their size and their ability to move away from the producing cell.

Age-related (AMD) is a disease that destroys the macula, the central part of the retina responsible for detailed vision needed for reading, driving and face recognition. It comes in two types—"wet" and "dry." In wet AMD, a pathological overproduction of VEGF leads to the development of abnormal blood vessels, which leak and damage the retina. Wet AMD can be treated with some success with anti-VEGF drugs that block abnormal blood vessel growth and leakage. Dry macular degeneration develops less rapidly, and is related to an accumulation of debris under the retina that can advance to GA where RPE and underlying vessels are lost.

Knowing that the RPE in the adult produced VEGF, the Schepens team hypothesized that in a healthy individual ,the RPE produces forms of VEGF that, when secreted, can move away from the RPE and reach the underlying CC to support its function and survival. The CC vessels are extremely important as they supply the photoreceptors (the light- and color-sensitive cells in the macula) with oxygen and nutrients necessary for vision.

In the PNAS study, the researchers tested their hypothesis using a genetic mouse model in which the RPE produced a form of VEGF that was unable to diffuse. As the mice aged, they began to display an age-dependent degeneration of both the CC and RPE, culminating with the death of photoreceptors and vision loss, similar to that observed in GA,.

The next step in the research, according to the first author Dr. Magali Saint-Geniez, is to determine if this model can be used to investigate the role of RPE-CC interaction in AMD and to design new therapies.

Source: Schepens Eye Research Institute

Explore further: Important mechanism identified in the formation of blood vessels

Related Stories

Study suggests new approach to common cause of blindness

June 14, 2009

Researchers at the University of North Carolina at Chapel Hill School of Medicine in collaboration with lead investigators at the University of Kentucky have identified a new target for the diagnosis and treatment of age-related ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.