Energy-saving powder: Converting methane to methanol

November 11, 2009
Energy-saving powder
Waste that may soon be no longer necessary: during the course of a year, more natural gas is burned off throughout the world than is consumed in all of Germany. An efficient process using a new solid catalyst extracts methanol, which is easy to transport, from this by-product. Image: iStockphoto LP

It is currently estimated that natural gas resources will be exhausted in 130 years; however, those reserves where extraction is cost-effective will only flow for another 60 years or so.

Scientists at the Max Planck Institute for Coal Research and at the Max Planck Institute of Colloids and Interfaces might be helping to make it worthwhile to tap into previously unused resources. They have developed a that converts to methanol in a simple and efficient process. Methanol can be transported from locations where it is not economical to build a pipeline.

It is not cost-effective to lay pipelines to remote or small fields; nor is it worthwhile accessing the methane in coal seams or in gas sand, or which is burned off as a by-product of oil production, although the methane burned off throughout the world could more than satisfy Germany's requirement for . It is also too expensive to liquefy the gas and transport it on trains or in tankers - and even chemistry has so far been unable to offer a solution.

Although there are chemical ways to convert methane to methanol, which is easy to transport and which is suitable as a raw material for the chemical industry, "the processes commonly used up to now for producing - steam reforming followed by methanol synthesis or Fischer-Tropsch synthesis - are not economical," says Ferdi Schüth, Director at the Max Planck Institute for Coal Research in Mülheim an der Ruhr. He and his colleagues have been working with Markus Antonietti and his team at the Max Planck Institute of Colloids and Interfaces in Potsdam to develop a catalyst that might change all this.

The catalyst consists of a nitrogenous material, a covalent, triazine-based network (CTF) synthesized by the chemists in Potsdam. "This solid is so porous that the surface of a gram is approximately equivalent in size to a fifth of a football field," says Markus Antonietti. The researchers in Mülheim insert platinum atoms into the voluminous lattice of the CTF. Thanks to the large surface area, the catalyst oxidizes the methane efficiently to methanol, as it offers the methane a large area in which to react when the chemists immerse it in oxidizing sulphuric acid, force methane into the acid and heat the mixture to 215° Celsius under pressure. Methanol is created from more than three-quarters of the converted gas.

A catalyst manufactured by the American chemist Roy Periana more than ten years ago from platinum and simple nitrogenous bipyrimidine also effectively creates methanol, but only supports the reaction in a soluble form. This means that the catalyst - which chemists refer to as a homogenous catalyst - subsequently needs to be separated off in a laborious and somewhat wasteful process. "It's much easier with our heterogeneous catalyst," says Ferdi Schüth. The chemists in Mülheim filter out the powdery platinum and CTF catalyst, and then separate the acid and methanol in a simple distillation.

The catalyst developed by the Max Planck chemists probably uses the same mechanism as the Periana catalyst and was indeed inspired by it. "When I saw the structure of CTF, I noticed the elements which correspond to its bipyrimidine ligands," says Schüth. "That's when I had the idea of manufacturing the solid catalyst."

To get closer to a large-scale technical application, he and his colleagues are now attempting to enable the process to work with reactants in gaseous rather than soluble form. "We are also looking for similar, even more effective catalysts," says Schüth. "We have already found more efficient homogenous catalysts with ligands other than bipyrmidine." They are now using these as a model for simple, easy to manage catalysts like the CTF and platinum powder.

More information: Regina Palkovits, Markus Antonietti, Pierre Kuhn, Arne Thomas, and Ferdi Schüth, Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to , Angewandte Chemie International Edition, Volume 48, Issue 37, September 1, 2009; DOI: 10.1002/anie.200902009

Source: Max-Planck-Gesellschaft (news : web)

Explore further: Coal Liquefaction

Related Stories

Coal Liquefaction

January 9, 2006

The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers ...

A water splitter with a double role

March 9, 2009

( -- There is a lot of hope invested in hydrogen, but it also presents some problems. It is energy-rich, clean and, as a constituent of water, of almost unlimited availability. However, so far it has been difficult ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 11, 2009
There is a method to turn methanol into gasoline. So logically the next step is to co-locate this process near wells, etc. and use the gasoline for the transport of the methanol to market.
not rated yet Nov 12, 2009
is there a reason you wouldn't just use the methanol fuel, i mean creating gasoline heavy transports vs gasoline heavy transports isn't any different in scope of project as there are few large movers that use gasoline.
On a more relevant not, this in conjunction with digesters and landfill gas presents a new renewable fuel source that is both safer and easier than biogas use.
Did anyone catch the porosity of this? 1gm = SA or 1/5 of a football field that's insane, regardless of which football they are referring to.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.