Saving the single cysteine: new antioxidant system found (w/ Video)

November 19, 2009

( -- We've all read studies about the health benefits of having a life partner. The same thing is true at the molecular level, where amino acids known as cysteines are much more vulnerable to damage when single than when paired up with other cysteines.

Now, researchers at the University of Michigan, along with colleagues in Belgium, have discovered a new antioxidant system that protects single cysteines. The research appears in the Nov. 20 issue of the journal Science.

Our body's proteins, which are made up of and perform essential roles, can be injured by reactive species known as oxidants. Over time, the injuries can lead to cancer, , Alzheimer's disease and other serious medical conditions. To guard against such harm, our cells have special proteins that can repair or reverse oxidative damage. But until now, no such repair system had been identified for single cysteines, which are particularly susceptible to the damage.

This video is not supported by your browser at this time.
New antioxidant system protects singleton. Credit: University of Michigan

In the current research, Carroll and colleagues used previously developed chemical probes to investigate and nail down the mechanism involved.

"Our results reveal that a protein called DsbG serves this precise function in the periplasmic compartment in bacteria, protecting single cysteines residues from hyperoxidation and inactivation," said Carroll, an assistant professor of chemistry and a research assistant professor in the Life Sciences Institute. The periplasmic compartment is a space between the inner and outer membranes of bacteria such as Escherichia coli, which were used in this study. Although human cells have no periplasmic compartment, they have an equivalent membrane network called the .

"Since proteins from the DsbG family are widespread and have been identified in the majority of genomes including humans, some of these related members may play similar roles in controlling cysteine ," Carroll said. A better understanding of these biological processes may lead to more effective antioxidant therapies.

Carroll's coauthors on the paper are Matthieu Depuydt, Katleen Denoncin and Jean-Fran├žois Collet of the Université catholique de Louvain and the Brussels Center for Redox Biology; University of Michigan graduate student Stephen Leonard; Didier Vertommen and Pierre Morsomme of the Université catholique de Louvain; and Khadija Wahni and Joris Messens of Vrije Universiteit Brussel and Brussels Center for Redox Biology.

Provided by University of Michigan (news : web)

Explore further: Study reveals new activation mechanism for pain sensing channel

Related Stories

Unfolding 'nature's origami'

March 2, 2009

Sometimes known as "nature's origami", the way that proteins fold is vital to ensuring they function correctly. But researchers at the University of Leeds have discovered this is a 'hit and miss' process, with proteins potentially ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.