Researchers show how to divide and conquer 'social network' of cells

Nov 09, 2009
Université de Montréal scientists Stephen Michnick and Po Hien Ear have managed the feat of dividing cell networks down to their genesis. Credit: Stephen Michnick; Po Hien Ear, Université de Montréal

On Noah's Ark animals came in twos: male and female. In human bodies trillions of cells are coupled, too, and so are the molecules from which they are composed. Yet these don't come in twos, they are regrouped into indistinguishable clusters. Because these complex cell networks are the backbone of life - and illness - scientists have long searched for ways to splice cell clusters down to their original pairs.

According to a new study in the journal , Université de Montréal scientists Stephen Michnick and Po Hien Ear have managed the feat of dividing cell networks down to their genesis. The discovery could have applications for diseases such as cancer, where blood-thirsty cells could be decoupled to curb their multiplication in the human body.

"We have provided a simple way to decouple one cellular network from another," says Dr. Michnick, a Université de Montréal biochemistry professor and Canada Research Chair in Integrative Genomics. "Once decoupled, we could clearly distinguish what one network was doing versus another."

As part of their study, the researchers reproduced gene networks using baker's yeast - a cellular organism proven to resemble the critical functions of human cells. "We cut out relationships between cells to see which are crucial and which are not," explains Dr. Michnick. "We found that de-coupling permitted growth regulation. One way to attack cancer would be to find that decouple other networks (as we did), slow down its growth and weaken the illness."

More information: The article, "A general life-death selection strategy for dissecting protein functions," published in Nature Methods, was coauthored by Po Hien Ear and Stephen W. Michnick of the Université de Montréal. www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.1389.html

Source: University of Montreal (news : web)

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Not so sweet: Over-consumption of sugar linked to aging

Mar 06, 2009

We know that lifespan can be extended in animals by restricting calories such as sugar intake. Now, according to a study published in the journal PLoS Genetics, Université de Montréal scientists have discov ...

Insomnia is bad for the heart

Sep 04, 2009

Can't sleep at night? A new study published in the journal Sleep has found that people who suffer from insomnia have heightened nighttime blood pressure, which can lead to cardiac problems. The investigation, which measur ...

Scientists discover gene responsible for brain's aging

Jan 16, 2009

Will scientists one day be able to slow the aging of the brain and prevent diseases such as Alzheimer's and Parkinson's? Absolutely - once the genetic coding associated with neuronal degeneration has been unraveled.

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.