Biologists discover bacterial defense mechanism against aggressive oxygen

November 20, 2009

Bacteria possess an ingenious mechanism for preventing oxygen from harming the building blocks of the cell. This is the new finding of a team of biologists that includes Joris Messens of VIB, a life sciences research institute in Flanders, Belgium, connected to the Vrije Universiteit Brussel. The scientists made this discovery by modifying the DNA of the intestinal bacterium Escherichia coli.

By means of this , they have uncovered the existence of a mechanism that repairs proteins in the cell that have been damaged by oxygen. There are indications that a similar repair system is active in human cells. The research results are being published in the eminent scientific journal Science. At the same time, the researchers are posting an animation online that illustrates the finding.

Proteins are the most important components of our body's cells. They aid the chemical reactions in the cell, provide structure and support, and facilitate communication within the organism. However, proteins are particularly sensitive to harmful effects from oxygen (oxidation). This is certainly the case for proteins that contain sulfurous components, with the amino acid cysteine as the basis. This is why the cysteine building blocks often occur as pairs, in which the bond between the two sulfur atoms provides protection.

But the cell also contains proteins in which the cysteine building blocks appear alone. How these single cysteines have been protected against oxygen has been unclear. Until now. Studying E. coli, the team of scientists, under the leadership of Jean-Fran├žois Collet of the de Duve Institute (UCLouvain), has identified how two proteins - DsbG and DsbC - form the basis of an ingenious repair mechanism. Should the cysteine building block of a become damaged by oxygen, one of the two proteins takes care of repairing the damage.

Oxygen is vital to the respiration of almost all cells. Among other things, the use the gas in the process of burning sugars to produce energy. But is a very aggressive molecule and can do serious harm to the cell's building blocks. This damage can be compared to the rusting or oxidation of iron. "Sulfurous proteins are extra-sensitive to oxidation," explains Joris Messens (VIB / the Vrije Universiteit Brussel). "If they become oxidized, they lose their functioning. This research clarifies how the cell arms itself against this event. Scientists have wondered for a long time what the function of DsbG and DsbC is and the difference between them. Now, finally, we have an answer."

Source: VIB (the Flanders Institute for Biotechnology)

Explore further: Study reveals new activation mechanism for pain sensing channel

Related Stories

Scientists unveil mechanism for 'up and down' in plants

October 28, 2008

VIB researchers at Ghent University, Belgium, discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow. They discovered how ...

Bacteria pack their own demise

July 30, 2009

Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them. After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating ...

Powerhouses in the cell dismantled

October 15, 2009

All of life is founded on the interactions of millions of proteins. These are the building blocks for cells and form the molecular mechanisms of life. The problem is that proteins are extremely difficult to study, particularly ...

Recommended for you

'Hog-nosed rat' discovered in Indonesia

October 6, 2015

Researchers working in Indonesia have discovered a new species of mammal called the hog-nosed rat, aptly named after its features, that scientists said they had never been seen before.

Ancestors of land plants were wired to make the leap to shore

October 5, 2015

When the algal ancestor of modern land plants first succeeded in making the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting ...

Stress in adolescence prepares rats for future challenges

October 5, 2015

Rats exposed to frequent physical, social, and predatory stress during adolescence solved problems and foraged more efficiently under high-threat conditions in adulthood compared with rats that developed without stress, according ...

Are fish the greatest athletes on the planet?

October 5, 2015

When you think of the world's greatest athletes, names like Usain Bolt generally spring to mind, but scientists have discovered the best athletes could well be found in the water, covered in scales.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.