Bacteria 'launch a shield' to resist attack

November 2, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant to antibiotics, according to an article in the November issue of Microbiology.

Researchers from the University of Copenhagen and the Technical University of Denmark along with other collaborators in Denmark and the US found that the bacterium Pseudomonas aeruginosa can 'switch on' production of molecules that kill - preventing the bacteria being eliminated by the body's immune system.

P. aeruginosa is responsible for many hospital-acquired infections and also causes chronic infections in those with pre-existing medical conditions such as (CF). The bacteria cause persistent lung infections by clumping together to form a biofilm, which spreads over the lungs like a slime. Such biofilms are generally resistant to antibiotics as well as the host immune response.

The study showed that P. aeruginosa uses a well-studied communication system called quorum sensing (QS) to detect approaching white blood cells and warn other bacteria in the biofilm. In response to this signal, the bacteria increase their production of molecules called rhamnolipids. These molecules sit on the biofilm surface to form a shield that destroys any white blood cells that encounter it. Interrupting quorum sensing to halt the "launch a shield" response could be a way of treating these bacteria that can resist antibiotics as well as the host immune system.

Professor Michael Givskov from the University of Copenhagen who led the study believes there are significant clinical benefits to this research. "The ultimate goal [of this research] is to eradicate the present day's that are involved in the bulk of chronic infections," he says. "Antibiotic resistance is one of the most serious emerging health problems in the world today. More than 70% of the disease-causing are resistant to at least one of the currently available antibiotics. Studying interactions between P. aeruginosa and the innate and adaptive immune response will provide valuable information for the design of novel antimicrobials".

Source: Society for General Microbiology

Explore further: Trojan horse strategy defeats drug-resistant bacteria

Related Stories

Trojan horse strategy defeats drug-resistant bacteria

March 16, 2007

A new antimicrobial approach can kill bacteria in laboratory experiments and eliminate life-threatening infections in mice by interfering with a key bacterial nutrient, according to research led by a University of Washington ...

No hiding place for infecting bacteria

March 16, 2009

Scientists in Colorado have discovered a new approach to prevent bacterial infections from taking hold. Writing in the Journal of Medical Microbiology, Dr Quinn Parks and colleagues describe how they used enzymes against ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.