Venomous bite: Harmless digestive enzyme evolved into venom in two species

October 29, 2009
A harmless digestive enzyme can be turned into a toxin in two unrelated species — a shrew (pictured) and a lizard — thereby giving each a venomous bite. Courtesy of the University of Michigan Museum of Zoology

(PhysOrg.com) -- Biologists have shown that independent but similar molecular changes turned a harmless digestive enzyme into a toxin in two unrelated species -- a shrew and a lizard -- giving each a venomous bite.

The work, described this week in the journal by researchers at Harvard University, suggests that protein adaptation may be a highly predictable process, one that could eventually help discover other toxins across a wide array of species.

"Similar changes have occurred independently in a shrew and a lizard, causing both to be toxic," says senior author Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Department of Organismic and . "It's remarkable that the same types of changes have independently promoted the same toxic end product."

Lead author Yael T. Aminetzach, a postdoctoral researcher in the same department, suggests that the work has important implications for our understanding of how novel protein function evolves by studying the relationship between an ancestral and harmless protein and its new toxic activity.

"The venom is essentially an overactivation of the original digestive enzyme, amplifying its effects," she says. "What had been a mild in the salivary glands of both species has become a much more extreme compound that causes paralysis and death in prey that is bitten."

In the first part of the study, Aminetzach and her colleagues compared a toxin found in the salivary glands of the insectivorous North American shrew Blarina brevicauda to its closely related digestive enzyme kallikrein. Enzymes are proteins that catalyze, or increase the rates of, chemical reactions; this rate enhancement occurs at a specific region on an enzyme called the active site.

Aminetzach found that the specific molecular differences between kallikrein and its toxic descendent are highly localized around the enzyme's active site.

" is fostered by three specific changes that increase enzyme activity," Aminetzach says. "The active site is physically opened up, and the loops surrounding it become more flexible. The area around the active site also becomes positively charged, serving to better guide the substrate directly into the active site."

To further demonstrate that these molecular changes to kallikrein are related to the evolution of toxicity, Aminetzach explored the evolution of another kallikrein-like toxin in the Mexican beaded lizard (Helodermata horridum). She found that this toxin, while distinct from the analogous toxin in the shrew, nonetheless exhibits the same catalytic enhancement relative to the original kallikrein enzyme.

Equally important, she found that this functional change in the lizard toxin is accomplished through similar molecular modifications of kallikrein, and through identical mechanisms of structural alteration of the active site, as in the shrew toxin.

This insight -- namely, that toxins could arise by increasing the catalytic activity of enzymes through a conserved and predictable mechanism -- could be used both to identify other kallikrein-derived toxic proteins and as a method to evolve new function in general.

Source: Harvard University (news : web)

Explore further: Evolution mystery: Spider venom and bacteria share same toxin

Related Stories

Evolution mystery: Spider venom and bacteria share same toxin

February 1, 2006

It's a case of evolutionary detective work. Biology researchers at Lewis & Clark College and the University of Arizona have found evidence for an ancient transfer of a toxin between ancestors of two very dissimilar organisms--spiders ...

Unlocking the function of enzymes

November 6, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Snake venoms share similar ingredients

December 20, 2007

Venoms from different snake families may have many deadly ingredients in common, more than was previously thought. A study published in the online open access journal BMC Molecular Biology has unexpectedly discovered three-finger ...

A Change for the better: Improving properties of enzymes

September 24, 2009

An international team of scientists from the Czech Republic, Germany and Japan have developed a new method for improving the properties of enzymes. The method has potential for wide application in the chemical, medicinal ...

Recommended for you

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.