Tailoring the optical dipole force for use on molecules

October 29, 2009 Miranda Marquit feature

(PhysOrg.com) -- "Scientists have been working with dipole fields for quite some time," Peter Barker tells PhysOrg.com. "However, most of the work is focused on very small particles, like atoms, or on larger particles, such as for use as optical tweezers. There is an interim region between atoms and large particles, and that is what we are looking at. We want to be able to control molecules a little differently."

Barker is a professor at University College London, and has been working on a process by which an optical field can be used to align molecules. Along with Simon Purcell, Barker has found a way to not only align molecules through the tailoring of the optical dipole force, but to also move them around. “This is, we believe, the first time that alignment and the ability to move molecules around have been brought together using the dipole force,” Barker says. Barker and Purcell report their work in : “Tailoring the Optical Dipole Force for Molecules by Field-Induced Alignment.”

“In order to do this, we have a gas sitting at a relatively high pressure in a chamber. Using strong optics, we send a beam through the chamber, forming a hole of sorts. The optical field acts as a tractor beam, grabbing the molecules present in the gas and bringing them to rest. This makes them ultra cold,” Barker explains.

in a similar fashion has been done with atoms for quite some time. It is standard practice for many experiments. However, Barker says that it is harder to produce ultra-cold molecules than it is to bring to a state of rest. “This could provide a way to cool molecules to just above , which is of interest for a number of research applications.”

The process introduced by Barker and Purcell could also have use as a way to separate rotational states. “In some cases, scientists want to be able to separate out different states. Unfortunately, there is a whole range of molecules that can’t really be singled out in this way. With our dipole tailoring process, though, it is possible to separate out these states. We could also separate molecules of different types.”

Another use for this process could conceivably be the use of light to focus molecules onto a particular surface. “We haven’t done this yet, but it should be possible get molecules to act as a lens, and then rotate the polarization to change the focus. We think that it should be possible to get features down to the nanometer size by focusing molecules in this manner.”

“Being able to tailor the optical dipole force in this way is a big step,” Barker says. “In our experiment, we were able to both align molecules and move them around by tailoring the optical dipole force. Being able to align and position molecules simultaneously is something that hasn’t been done before with this force, and it has a great potential, both for fundamental research, and for possible practical applications.”

More Information: S.M. Purcell and P.F. Barker, “Tailoring the Dipole Force for Molecules by Field-Induced Alignment,” Physical Review Letters (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.103.153001

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: 'Voltage Patterning' could be next step in nanostructure lithography

Related Stories

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 29, 2009
Look up "photon induced electric field poling"
for a different approach.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.