'Spaghetti' scaffolding could help grow skin in labs

October 16, 2009

Scientists are developing new scaffolding technology which could be used to grow tissues such as skin, nerves and cartilage using 3D spaghetti-like structures. Their research is highlighted in the latest issue of Business, the quarterly highlights magazine of the Biotechnology and Biological Sciences Research Council.

The new structures are being developed by scientists from the University of Bristol, using proteins from alpha helices - one of the fundamental ways that strings of fold - to create long fibres called hydrogelating self assembling fibres (hSAFs), or hydrogels. By learning how to build hSAFs from scratch, the researchers are starting to understand how they might use these 3D scaffolds to support the growth of nerves, blood vessels and cartilage tailored to the needs of individual patients.

Professor Dek Woolfson who is leading the work, explains: "To make hydrogels you need something long and thin that will interact with copies of itself and form meshes, but is also water soluble. However rather than using natural proteins, which are complex, we've tried to make something as simple as possible that we fully understand using peptides and self assembling proteins."

Currently, structures, made either synthetically or from natural resources such as seaweed, are used in everyday products from shampoos to drug capsules.

But explains, Professor Woolfson, the hSAFs his team are developing will have different uses: "The downside of using or proteins is that they are expensive compared with synthetic polymers. We are almost certainly looking at high end biomedical applications, generating cells which can be used in living systems. Potential medical benefits include growing tissues such as skin, nerves and cartilage in the laboratory which will advance basic research and may lead to biomedical applications like speeding up wound healing and grafting."

Commenting on the research, BBSRC Chief Executive Professor Doug Kell, said: "This research highlights the importance of understanding how things work at a micro level and then looking at different ways to apply this knowledge to create effective solutions for tackling everyday problems, in this instance, translating basic bioscience into technology which could have very real clinical benefits for patients."

This research is featured in the latest edition of Business, the quarterly magazine of BBSRC.

More information: To read the full article, click here.

Source: Biotechnology and Biological Sciences Research Council (news : web)

Explore further: Scientists move closer to bio-engineered bladders

Related Stories

Scientists move closer to bio-engineered bladders

August 1, 2007

Researchers at the University of York are using an understanding of the special cells that line the bladder to develop ways of restoring continence to patients with serious bladder conditions, including cancer.

Mathematicians help unlock secrets of the immune system

October 9, 2007

A group of scientists, led by mathematicians, has taken on the challenge of building a common model of immune responses. Their work will radically improve our understanding of the human immune system by allowing all the scientific ...

Structural biology spin-out tackles major diseases

August 7, 2008

A spin out company from basic structural biology, Asterion Ltd., has led to new technology that provides a way of creating therapeutic proteins to tackle major diseases such as cancer, diabetes and infertility. The research ...

New discovery reveals fate of nanoparticles in human cells

September 22, 2009

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have uncovered what happens to biomimetic nanoparticles when they enter human cells. They found that the important proteins that make ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.