A new understanding of why seizures occur with alcohol withdrawal

Oct 17, 2009

Epileptic seizures are the most dramatic and prominent aspect of the "alcohol withdrawal syndrome" that occurs when a person abruptly stops a long-term or chronic drinking habit. Researchers have shown that the flow of calcium ions into brain cells via voltage-gated calcium channels plays an important role in the generation of alcohol withdrawal seizures, because blocking this flow suppresses these seizures. But do the changes in calcium currents contribute to alcohol withdrawal seizures or are they a consequence of the seizures?

Using a careful analysis of correlations between the course of alcohol withdrawal seizures and the expression of currents, Georgetown University Medical Center researchers found that the enhancement of total calcium current density in pre-clinical animal studies occur prior to the onset of alcohol withdrawal seizures. The research presented at 39th annual meeting of the Society for Neuroscience also shows that calcium currents remain enhanced during the period of seizure susceptibility, but return to control levels when the period of seizure susceptibility is over.

"These preliminary findings are the first to indicate that altered calcium channel activity contributes to the occurrence of alcohol withdrawal seizures," explains lead author, Prosper N'Gouemo, PhD, an assistant professor in the department of pediatrics at GUMC. "The next step in our research is to determine which types of voltage-gated contribute to the enhanced current density that takes place before the onset of alcohol withdrawal seizures so a potential treatment can be developed."

Source: Georgetown University Medical Center (news : web)

Explore further: How the brain makes decisions

Related Stories

Recommended for you

How the brain makes decisions

9 minutes ago

Some types of decision-making have proven to be very difficult to simulate, limiting progress in the development of computer models of the brain. EPFL scientists have developed a new model of complex decision-making, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.