Scientists turn stem cells into precursors for sperm, eggs

October 28, 2009

Human embryonic stem cells derived from excess IVF embryos may help scientists unlock the mysteries of infertility for other couples struggling to conceive, according to new research from the Stanford University School of Medicine. Researchers at the school have devised a way to efficiently coax the cells to become human germ cells — the precursors of egg and sperm cells — in the laboratory. Unlike previous research, which yielded primarily immature germ cells, the cells in this most-recent study functioned well enough to generate sperm cells.

"Ten to 15 percent of couples are infertile," said senior author Renee Reijo Pera, PhD. "About half of these cases are due to an inability to make eggs or sperm. And yet deleting or increasing the expression of genes in the womb to understand why is both impossible and unethical. Figuring out the genetic 'recipe' needed to develop human germ cells in the laboratory will give us the tools we need to trace what's going wrong for these people." Reijo Pera is a professor of obstetrics and gynecology at the medical school and the director of Stanford's Center for Human Embryonic Stem Cell Research and Education. The study will be published online by Nature on Oct. 28.

Previous efforts to study infertility have been hampered by the fact that — unlike many other biological processes — the human reproductive cycle cannot be adequately studied in animal models. And because germ cells begin to form very early in embryonic development (by eight to 10 weeks), there's been a dearth of human material to work with. "Humans have a unique reproductive system," Reijo Pera said. "Until now we've relied on studies in mice to understand human germ , but the reproductive genes are not the same. This is the first evidence that you can create functional human germ cells in a laboratory."

The scientists built on previous research in the mid-1990s by Reijo Pera that identified a number of genes involved in . Members of what's called the DAZ family, the genes are unusual in that they encode RNA-binding proteins rather than the DNA transcription factors more commonly known to regulate cellular events.

In the current study, the researchers treated human with proteins known to stimulate germ cell formation and isolated those that began to express germ-cell-specific genes — about 5 percent of the total. In addition to expressing key genes, these cells also began to remove modifications, or methyl groups, to their DNA that confer cell-specific traits that would interfere with their ability to function as germ cells. Such epigenetic reprogramming is a hallmark of germ cell formation.

They then used a technique called RNA silencing to examine how blocking the expression of each of three DAZ family members in the embryonic stem cells affected germ cell development. Conversely, they also investigated what happened when these genes were overexpressed.

They found that one family member, DAZL, functions very early in germ cell development, while two others, DAZ1 and BOULE, stimulate the then-mature germ cells to divide to form gametes. Overexpressing the three proteins together allowed the researchers to generate haploid cells — those with only one copy of each chromosome — expressing proteins found in mature sperm. (When a sperm and an egg join, the resulting fertilized egg again has two copies of each chromosome.) When treated in this manner, about 2 percent of the differentiated human embryonic stem cells were haploid after 14 days of differentiation.

The effect of the DAZ family members on the embryonic stem cells varied according to whether the cells were derived from a male or a female embryo. Overexpression of BOULE increased the relative proportion of putative germ cells from 2 to 12 percent in female, but not male, cell lines. This suggests that BOULE may play a larger role than the other proteins in the development of female germ cells.

The researchers plan to use a similar strategy to optimize the production of eggs from embryonic stem cells, as well as investigating whether reprogrammed adult cells called induced pluripotent cells, or iPS cells, can also be used to create germ cells. By charting the milestones of gamete development, they hope to identify potential problems that would lead to infertility or fetal disability.

"Although most of our birth defects are caused by problems in the development of eggs or sperm," said Reijo Pera, "it's not clear why there are so many errors. This research gives us a system we can use to compare errors in the germ line vs. somatic cells. For instance, we can now begin to directly investigate the effects of environmental toxins on germ cell differentiation and gamete development. We've already seen that, even in a dish, appear to be more sensitive to these compounds."

Source: Stanford University Medical Center (news : web)

Explore further: Egg-like cells obtained in pig fetal skin

Related Stories

Treating male infertility with stem cells

March 2, 2007

New research has examined the usefulness of bone marrow stem cells for treating male infertility, with promising results. The related report by Lue et al, “Fate of bone marrow stem cells transplanted into the testis: potential ...

Researchers Reprogram Human Induced Pluripotent Stem Cells

January 27, 2009

For the first time, UCLA researchers have reprogrammed human induced pluripotent stem (iPS) cells into the cells that eventually become eggs and sperm, possibly opening the door for new treatments for infertility using patient-specific ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.