Retinal rescue: Cells derived from human embryonic stem cells reverse retinal degeneration

Oct 01, 2009

A new study reports that transplanted pigment-containing visual cells derived from human embryonic stem cells (hESCs) successfully preserved structure and function of the specialized light-sensitive lining of the eye (known as the retina) in an animal model of retinal degeneration. The findings, published by Cell Press in the October 2nd issue of the journal Cell Stem Cell, represent an exciting step towards the future use of cell replacement therapies to treat devastating degenerative eye diseases that cause millions of people worldwide to lose their sight.

The epithelium (RPE) is a layer of pigmented cells sandwiched between the visual retinal cells, called photoreceptors, and the nourishing blood vessels at the back of the eye. The RPE provides essential support to the retinal photoreceptors and is critical for normal vision. Deterioration of the RPE plays a central role in the progression of diseases such as age-related macular degeneration and sub-types of retinitis pigmentosa. These conditions are associated with a progressive loss of vision that often leads to blindness.

"Although there are a variety of therapeutic approaches under development to delay the degenerative process, the grim reality is that many patients eventually lose their sight," explains Dr. Benjamin Reubinoff, a senior author of the study. "Cell therapy to replenish the degenerating RPE cells may potentially halt disease progression." Dr. Reubinoff and Dr. Eyal Banin who led the study, with their colleagues from Hadassah-Hebrew University Medical Center in Jerusalem, developed conditions to guide hESCs to differentiate into functional RPE-like cells in the laboratory.

The researchers found that nicotinamide (vitamin B3, NIC) and Activin A, an important growth factor, promoted differentiation of hESCs towards an RPE fate. The hESC-derived RPE-like cells, which could be identified by their characteristic black pigment, exhibited multiple biological properties and genetic markers that define authentic RPE cells. Further, the cells successfully delayed deterioration of retinal structure and function when they were transplanted into an animal model of caused by RPE dysfunction.

Taken together, the results demonstrate that NIC and Activin A promoted the differentiation of hESCs towards an RPE fate. The hESC-derived cells exhibited the defining characteristics associated with RPE and successfully rescued the retina when transplanted into an animal model of retinal degeneration. "Our findings are an important step towards the potential future use of hESCs to replenish RPE in blinding diseases," concludes Dr. Banin.

Source: Cell Press (news : web)

Explore further: Sex chromosomes—why the Y genes matter

Related Stories

Recommended for you

Sex chromosomes—why the Y genes matter

10 minutes ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

13 hours ago

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

How to get high-quality RNA from chemically complex plants

May 26, 2015

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.