Porphyrin Dimers Increase Efficiency of Dye-Sensitized Solar Cells

October 30, 2009 By Lisa Zyga feature
Photoexcited porphyrin dimers incorporated into thin dye-sensitized solar cells show efficient and fast electron injection, improving the light harvesting efficiency by 30%. Image copyright: Mozer, et al.

(PhysOrg.com) -- Porphyrins are most commonly thought of as the pigment in red blood cells, but now scientists have found that porphyrins can also be used to increase the efficiency of an inexpensive type of solar cell. In a recent study, researchers have found that a variety of porphyrin arrays can improve the solar-to-electrical energy conversion efficiency of dye-sensitized solar cells (DSSCs), and could potentially be used to construct larger 3-D light harvesting arrays.

The researchers, Attila J. Mozer and colleagues from the University of Wollongong in Australia, Shinshu University in Japan, the University of Otago in New Zealand, and the National Institute of Advanced Industrial Science and Technology in Japan, have published their study in a recent issue of the .

Regarded as an inexpensive alternative to , dye-sensitized solar cells work by imitating the way plants convert sunlight into energy. Rather than using silicon to absorb light, DSSCs absorb light using dye molecules, which are chemically bound to a porous film of . When a dye molecule absorbs a photon from sunlight, it ejects an electron into the titanium dioxide, and then the dye molecule is recharged by an electrolyte.

“The emulation of photosynthesis, the efficient and sustainable utilization of solar energy using renewable materials, represents one of the great scientific challenges or ‘Holy Grails’ of the 21st century,” Mozer and coauthor David Officer, also of the University of Wollongong, told PhysOrg.com. As the scientists explained, at the heart of this light-harvesting process are chlorophyll antennae. “Synthetic porphyrin molecules such as tetraphenylporphyrin A have similar optical properties to those of chlorophyll B but are much more easily manipulated in the laboratory,” the scientists said.

In the current study, the scientists designed two new kinds of porphyrin dimers composed of two monoporphyrin dyes linked in different ways, and incorporated them into DSSCs. In experiments, the researchers found that the dimers, when excited by a photon, could quickly and efficiently inject an electron into the titanium dioxide. Their measurements showed that both monoporphyrins within the dimers contributed to the electron injection.

Overall, the scientists found that the DSSCs with porphyrin dimers offered significant advantages in several areas: the modified thin film solar cells offered a 20% increase in the light harvesting efficiency, and a 10% increase in the incident photon-to-current conversion efficiency. Further, by incorporating the porphyrin dimers into the DSSCs, the researchers could achieve an absorbed photon-to-current conversion efficiency of 70-80%.

“The best efficiency for a ruthenium dye-sensitized solar cell is around 12%, and 7% for a porphyrin-sensitized solar cell, both using thick (15-20 micron) photoanodes,” the scientists said. “The dimers help to increase the efficiency of thin (about 2.5 micron is demonstrated in the paper) dye-sensitized solar cells due to the increased light harvesting. The improvement demonstrated in our article is from 2.9% for the N719 standard ruthenium dye to 3.8% for the P10 linear dimer, an overall 30% increase. The challenge is of course to increase thin film efficiency as close to the 12% of thick film devices using larger arrays.”

The scientists found that both kinds of porphyrin dimers performed well in these experiments, suggesting that both dimers could be used as building blocks to construct larger 3-D light harvesting arrays with efficient solar energy conversion.

“Light harvesting in the dye-sensitized solar cell relies on the photoactivity of a single dye layer, effectively 2-D rather than 3-D light harvesting,” the researchers said. “A significant research effort has been invested in creating multichromophoric dye arrays in order to go beyond this conventional approach. However, introduction of these arrays into photovoltaic devices has not provided major improvement to date.”

As the scientists explain, there are number of challenges facing DSSCs. These challenges include improving the charge transport and increasing cell efficiency by using more red absorbing dyes or mixtures of dyes that absorb light at different wavelengths across the solar spectrum.

More information: Attila J. Mozer, et al. “Zn-Zn Porphyrin Dimer-Sensitized : Toward 3-D Light Harvesting.” J. Am. Chem. Soc. DOI: 10.1021/ja9057713

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Natural solar collectors on butterfly wings inspire more powerful solar cells

Related Stories

Best energy harvesting sources for future AF UAVs

July 14, 2009

Dye-sensitized solar cells (DSSCs) are expected to power Air Force unmanned aerial vehicles (UAVs) in the future because they are an optimum energy harvesting source that may lead to longer flight times without refueling.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Oct 30, 2009
bottomline, what is the power to grid efficiencey?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.