GSU professor develops new method to help keep fruit, vegetables and flowers fresh

October 20, 2009

Did you know that millions of tons of fruits and vegetables in the United States end up in the trash can before being eaten, according to the U.S. Department of Agriculture? A Georgia State University professor has developed an innovative new way to keep produce and flowers fresh for longer periods of time.

Microbiologist George Pierce's method uses a naturally occurring microorganism — no larger than the width of a human hair — to induce enzymes that extend the ripening time of fruits and , and keeps the blooms of flowers fresh. The process does not involve genetic engineering or pathogens, but involves microorganisms known to be associated with plants, and are considered to be helpful and beneficial to them.

"These beneficial soil microorganisms serve essentially the same function as eating yogurt as a probiotic to have beneficial organisms living in the ," Pierce said.

The process works by manipulating the organism's diet so that it will over express certain enzymes and activities that work in the ripening process and keeping the flower blooms fresh. Pierce analogizes this to using diet and exercise to improve the performance of an athlete.

"We change the diet of the organism, and we can change its performance," Pierce said. "It's no different than taking a good athlete and putting them on a diet and exercise regime, and turning him or her into a world-class athlete."

In a very simple sense, climacteric plants — such as apples, bananas, peaches and tomatoes —respond to climactic change, and when they do, they produce increased levels of signal compounds like ethylene. For such as peaches, ethylene causes the peach to ripen, increases aroma chemicals, but unfortunately, makes the peach very fragile.

"If you've seen ripe peaches, they will simply fall apart," Pierce said. "It will lose 90 percent of its ability to resist pressure, which means that if a peach responds normally to ethylene, it is subject to bruising when you ship it."

The enzymes produced from Pierce's new method reduce the response to signal compounds so that it takes a longer period of time for fruits to ripen, doubling the time it takes for ripening.

The catalyst in this process can be distributed through various formulations and configurations. These include being incorporated into shipping boxes, packing materials or used to treat the air of shipping containers. It could be used either with individual fruits or vegetables or for larger, bulk quantities.

This new process could have a big impact on preventing waste, improving the consumption of healthy fruits and vegetables, allowing companies to ship produce longer distances.

"Who hasn't bought fruit or vegetables and then thrown them away?" Pierce said. "Most people will buy more, and consume more, if they know that they could have a better quality of produce for longer." Pierce said.

The method also will allow for the storage of fruits, vegetables and flowers at room temperatures rather than refrigeration, thus helping to save energy, Pierce said.

Source: Georgia State University (news : web)

Explore further: Laser Shows if Fruit's Beauty is Only Skin Deep

Related Stories

Laser Shows if Fruit's Beauty is Only Skin Deep

May 8, 2005

The produce industry is working with the Agricultural Research Service (ARS) to make sure that fruits and vegetables taste as good as they look. They're counting on "machine vision" tools that can predict the quality of ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.