Discovery of enzyme structure points way to creating less toxic anti-HIV drugs

October 15, 2009

By discovering the atomic structure of a key human enzyme, researchers at The University of Texas at Austin have pointed the way toward designing anti-HIV drugs with far less toxic side effects.

Their work was published this week in Cell.

"Many anti-HIV drugs are designed to stop the process of ," says Dr. Whitney Yin, assistant professor of chemistry and biochemistry. "That turns out to be a great thing to do to help cure infections, because it stop the processes of .

"At the same time, however, when you target such a critical process in viruses, you may also target human enzymes that perform similar functions in normal cells, and this is what causes harmful drug side effects."

Yin and her graduate student, Young-sam Lee, have solved the of an enzyme, known as Pol γ (pol gamma), that is responsible for DNA replication in human mitochondria.

When mitochondria are working normally, they produce most of the energy that sustains human . When pol gamma comes into contact with certain anti-retroviral drugs, however, it can incorporate the drug into mitochondrial DNA, and thus interfere with the normal replication process. This interferes with the ability of mitochondria to function. The consequences can range from simple nausea to bone marrow depletion to organ failure.

"Patients who are taking this class of anti-HIV drugs have suffered these drug toxicities for a long time," says Yin. "Dosages and combinations of drugs can be chosen so they don't kill you, but they still can't be used at their most effective concentrations against . However, in large part because combination therapies have become more successful and patients are living longer, toxicity has become more of an issue than before."

Although it's been known for some time that pol gamma is responsible for mediating the toxicity of the drugs, Yin says, it has been difficult to design a drug that can distinguish between HIV and pol gamma without knowing the structure of pol gamma. With the structures of both pol gamma and HIV known, the differences between the two can be exploited in the design of new drugs that will be more selective (and thus less toxic) against HIV.

"This is a unique opportunity for drug design," says Yin. "Now you have two pictures side by side. You have the viral target protein and the human protein. You know not to do anything in this region where the two proteins are similar, but rather focus in areas where they're different."

In addition to its relevance to anti-HIV drug design, Yin's research is also helping to explain how mutations in pol gamma lead to various degenerative diseases, including epilepsy, encephalopathy and Alpers' syndrome (a fatal childhood disease leading to brain and liver failure).

Source: University of Texas at Austin (news : web)

Explore further: Clearing jams in copy machinery

Related Stories

Clearing jams in copy machinery

September 19, 2005

Bacteria and humans use a number of tools to direct perhaps the most important function in cells -- the accurate copying of DNA during cell division. New research published this week in Molecular Cell from the laboratory ...

Herpes drug inhibits HIV replication, but with a price

November 6, 2008

The anti-herpes drug acyclovir can also directly slow down HIV infection by targeting the reverse transcriptase (RT) enzyme, researchers report in this week's JBC. This beneficial effect does pose a risk though, as HIV-infected ...

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.