Company Introduces Novel Nanotechnology for Revolutionizing Imaging Using T-rays

October 20, 2009

Yissum Research Development Company of the Hebrew University of Jerusalem today announced that Professor L.D. Shvartsman and Professor B. Laikhtman, from the Racah Institute of Physics at the Hebrew University of Jerusalem, have invented a novel design of TeraHertz-ray, or T-ray, lasers.

Using nanostructures which are based on semiconductors with special properties, the novel device will have 400 times higher gain than THz quantum cascade lasers, the only coherent T-ray sources existing today , This invention will make T-ray based cameras and spectrometers practical, ushering a new era in security and medical imaging.

T-rays are with a wavelength shorter than microwave but longer than infrared. They are extremely attractive for various imaging applications due to three main reasons: they can penetrate through various substances, including clothing and even walls, they are harmless, and therefore allow a safe use for healthcare and homeland security applications and they can detect various chemicals, in particular explosives. Thus, T-ray-based devices can detect hidden weapons and explosives, as well as improve patient care and safety in healthcare facilities by allowing an unlimited number of exposures for medical examinations.

However, despite all the advantages of T-rays, they are barely used due to lack of T-ray emitters that will generate powerful, coherent and adjustable terahertz waves. The invention of Professor Laikhtman and Professor Shvartsman overcomes these current limitations and suggests the design of effective THz lasers.

" rays are the imaging method of the future. They are comparable to in terms of their ability to penetrate opaque substances, but more importantly, they are harmless," said Yaacov Michlin, CEO of Yissum. "The novel method to produce efficient T-ray emitters will enable the use of this important imaging source for various applications, including security and medical applications."

Source: Hebrew University of Jerusalem (news : web)

Explore further: T-rays: New imaging technology spotlighted by American Chemical Society

Related Stories

Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Torch-sized devices will detect disease and weapons

October 10, 2005

Researchers at the University of Essex have been awarded almost £1.2 million as part of a programme to develop a new generation of portable, handheld radiation detectors that could have a range of potential applications ...

Terahertz laser source at room temperature

June 3, 2008

“There is a growing interest in utilizing terahertz radiation, or T-rays, for a variety of applications,” Mikhail Belkin, a scientist at Harvard University, tells PhysOrg.com. “The terahertz region is a part of the ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Engineers create prototype chip just three atoms thick

November 29, 2016

For more than 50 years, silicon chipmakers have devised inventive ways to switch electricity on and off, generating the digital ones and zeroes that encode words, pictures, movies and other forms of data.

Nanotechnology a 'green' approach to treating liver cancer

November 29, 2016

According to the American Cancer Society, more than 700,000 new cases of liver cancer are diagnosed worldwide each year. Currently, the only cure for the disease is to surgically remove the cancerous part of the liver or ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.