Chemosensitivity of cancer cells depends on their protein dependency

October 26, 2009
The spleen of mice overexpressing the oncogene c-myc and the anti-apoptotic protein MCL-1 is crowded with leukemia cells. Credit: Brunelle, J.K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200904049.

Two different anti-apoptotic proteins support cancer cell survival via an identical mechanism, yet differ in their sensitivity to chemotherapeutic drugs, report Brunelle et al. The study will be published online October 26, 2009 and in the November 2, 2009 print issue of the Journal of Cell Biology (JCB).

Cancer cells often become dependent on one or more anti-apoptotic proteins to avoid death while continuing to proliferate. BCL-2, for example, is overexpressed in many cancers and mops up pro-apoptotic proteins to prevent them from permeabilizing mitochondria and initiating cell death. Other tumors are reliant on a related protein called MCL-1, but less is known about this member of the BCL-2 family. Brunelle et al. created leukemic mice overexpressing MCL-1 and compared them to similar mice that produced excess BCL-2.

The leukemias suffered by these two types of mice were identical, yet a technique called BH3 profiling was able to distinguish between cells derived from the different animals by demonstrating a dependency on one or other of the two anti-apoptotic proteins. Immunoprecipitation experiments revealed that MCL-1 and BCL-2 both work by sequestering the same two pro-apoptotic targets.

Surprisingly then, leukemia cells reliant on MCL-1 were much more sensitive to a range of chemotherapeutic drugs than their BCL-2-dependent counterparts were. Brunelle et al. found that the different cytotoxic drugs all caused a rapid decrease in MCL-1 protein levels via proteosome-mediated degradation, allowing cell death to proceed quickly. BCL-2 protein is more stable however, so additional time and more drug is needed to kill BCL-2-dependent .

Thus, the block in apoptosis selected during oncogenesis is not necessarily complete, and can have a major influence on the cancer's chemosensitivity. Senior author Anthony Letai now plans to use BH3 profiling on human tumors, to determine which anti-apoptotic a patient's is dependent on and to correlate this with the tumor's response to chemotherapy.

More information: Brunelle, J.K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200904049

Source: Rockefeller University (news : web)

Explore further: New use for a cell toxin found to inhibit survival proteins in cancer cells

Related Stories

Cancer cell 'bodyguard' turned into killer

November 25, 2008

If you're a cancer cell, you want a protein called Bcl-2 on your side because it decides if you live or die. It's usually a trusted bodyguard, protecting cancer cells from programmed death and allowing them to grow and form ...

New clues about mitochondrial 'growth spurts'

March 2, 2009

Mitochondria are restless, continually merging and splitting. But contrary to conventional wisdom, the size of these organelles depends on more than fusion and fission, as Berman et al. show. Mitochondrial growth and degradation ...

New therapeutic target for melanoma identified

April 16, 2009

A protein called Mcl-1 plays a critical role in melanoma cell resistance to a form of apoptosis called anoikis, according to research published this week in Molecular Cancer Research.

New function for the protein Bcl-xL: It prevents bone breakdown

September 14, 2009

In blood cells, the protein Bcl-xL has a well-characterized role in preventing cell death by a process known as apoptosis. However, its function(s) in osteoclasts, cells that slowly breakdown bone (a process known as resorption), ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.