Long carbon fibers could improve blast resistance of concrete structures

October 20, 2009
Dr. Jeffrey Volz says long, coated carbon fibers, like those pictured in his left hand, could significantly improving a structure's ability to withstand blasts, hurricanes and other natural disasters. In his right hand are short, uncoated fibers, which resemble clumps of human hair.

(PhysOrg.com) -- Dr. Jeffery Volz, assistant professor of civil, architectural and environmental engineering at Missouri University of Science and Technology, and his team have received $567,000 to explore how adding carbon fibers could improve the blast and impact resistance of conventional reinforced concrete. The research is funded by the through a cooperative agreement with the Leonard Wood Institute.

Reinforcing with fibers isn't a new idea, Volz says. The Roman Empire used hair and straw in their concrete structures and Egyptians mixed straw in clay to make harder bricks. Today short carbon fibers - measuring no more than 1.5 inches - are found in buildings, bridges and slabs to limit the size of cracks. But in the future, Volz says the carbon fibers could be up to 6 inches in length, significantly improving a structure's ability to withstand blasts, hurricanes and other natural disasters.

"The long fibers will absorb more energy as they pull-out during the pressure wave or impact, cutting down on the potential for failure during an explosion or earthquake," Volz explains. "The fibers will also significantly diminish secondary fragmentation, reducing one of the leading causes of damage to surrounding personnel and materials. First responders will be able to get to the scene faster because they won't have to clear chunks of concrete out of their way."

Previous efforts by other researchers to incorporate longer carbon fibers have failed for two reasons. First, longer carbon fibers are more likely to ball up as the concrete is mixed. Second, it's difficult to disperse the carbon fibers throughout the concrete.

Coating the fibers can reduce the fibers tendency to form into a ball. The team plans to study a variety of formulas to find a coating that balances between flexibility and rigidity. "A delicate balancing act is required between allowing the fibers to flow easily during mixing yet bond sufficiently with the concrete matrix in the hardened state," Volz says.

In addition, the team plans to study how a negative electric charge, applied to a polymer coating, could force the fibers to disperse more uniformly during mixing.

Provided by Missouri University of Science and Technology (news : web)

Explore further: Low-cost fibers remove trace atrazine from drinking water

Related Stories

Low-cost fibers remove trace atrazine from drinking water

August 23, 2004

A new generation of high surface-area porous materials for removing atrazine from water supplies has been developed by researchers at the University of Illinois at Urbana-Champaign. The low-cost and wear-resistant fibers ...

Researcher studies carbon fibers for nuclear reactor safety

December 10, 2007

Carbon fibers that are only one-tenth the size of a human hair, but three times stronger than steel, may hold up to the intense heat and radiation of next generation nuclear power generators, providing a safety mechanism. ...

New building design withstands earthquake simulation (Video)

February 26, 2009

(PhysOrg.com) -- Researchers at the University of Michigan simulated an off-the-charts earthquake in a laboratory to test their new technique for bracing high-rise concrete buildings. Their technique passed the test, withstanding ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.