Atomic Wire with Protective Sheath: Stable Metal Nanowires One Atom Wide Inside Carbon Nanotubes

October 7, 2009

( -- Wires with atomic dimensions are potential structural elements for future nanoscopic electronic components. Such fine wires have completely new electronic properties. However, apart from the non-trivial production of metallic nanowires, their high chemical reactivity is a critical problem; they are easily oxidized in air and are not stable.

Japanese researchers working with R. Kitaura and H. Shinohara have now developed a new method that is simple and delivers stable nanowires: They deposit metal atoms inside of carbon nanotubes. As the scientists report in the journal , this forms metal wires of individual atoms lined up side-by-side that are so well protected by their sheath that they have long-term stability.

The method of production simply involves heating carbon nanotubes and a metal powder together in a vacuum. It works for all metals that enter into a gaseous phase at relatively low temperatures, such as europium, samarium, , and strontium. The metal atoms almost completely fill the cavity inside the carbon nanotubes. Using europium metal and carbon nanotubes with an inner diameter of about 0.76 nm, the researchers were able to obtain wires made of a single chain of individual . This first true one-dimensional nanowires was also stable after one month of exposure to air.

By using carbon nanotubes with different inner diameters, ultrafine wires with various diameters could be produced, which were for example formed of two or four atomic chains. In comparison to macroscopic europium crystals, the atomic wires demonstrate significantly different electronic and .

The nanowires are an ideal model for the study of one-dimensional phenomena. The researchers now aim to test the properties of the wires with respect to their suitability for use as “wiring” for nanoelectronic components.

More information: Hisanori Shinohara, High-Yield Synthesis of Ultrathin Metal Nanowires in Carbon Nanotubes, Angewandte Chemie International Edition 2009, 48, No. 44, doi: 10.1002/anie.200902615

Provided by Wiley (news : web)

Explore further: Carbonized TiO2 nanotubes with semimetallic properties increase the efficiency of methanol fuel cells

Related Stories

Using Nanotubes in Computer Chips

September 10, 2009

( -- MIT materials scientists have developed a new technique for growing carbon nanotubes that could replace the vertical wires in chips, permitting denser packing of circuits.

Recommended for you

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 08, 2009
It's probably easier to discover all the different things that carbon nanotubes CAN'T do, rather than trying to list all the things they can.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.