APP -- Good, bad or both?

October 18, 2009

New data about amyloid precursor protein, or APP, a protein implicated in development of Alzheimer's disease, suggests it also may have a positive role -- directly affecting learning and memory during brain development. So is APP good or bad? Researchers at Georgetown University Medical Center say both, and that a balance of APP is critical.

Alzheimer's disease, the fourth leading cause of death in the United States, is characterized by neuronal cell death and a progressive loss of functioning in the brain. Symptoms of Alzheimer's (AD) include memory loss and impaired judgment. Abeta is one of many proteins found to be associated with the disease. It is released when APP, a larger protein, is cut by several enzymes. Research suggests this occurs when APP is abnormally processed, possibly due to trauma, cholesterol levels or oxidative stress. When Abeta is released, it can form plaque, a contributing factor in AD. Thus, Abeta and APP are involved in the early process of AD development.

APP is also known to be present at the synapses between neurons though its molecular action is not understood. Synapse loss is thought to be one of the main contributors to the cognitive decline seen in AD.

In a presentation at the 39th annual meeting of the Society for Neuroscience, Georgetown University Medical Center researchers say that while APP is negatively associated with AD, it appears to play a critical role in brain development.

Many studies have elucidated the importance of synapses and dendritic spines, the protrusions that allow communication between , in and . In this new research, the GUMC scientists found decreased spine density in mice that have been genetically modified to not produce APP. The scientists then looked at four-week-old mice that over produced APP and found a significant increase in spine density. At one year old, however, these mice have Abeta plaques, as well as a decrease in spine density due to the effect of Abeta, which is known to be neurotoxic.

"Our work suggests that APP balance is critical for normal neuronal development, connection of synapses, and dendritic spine development, all of which have implications for the extensive synapse loss and cognitive decline seen in Alzheimer's disease," explains the study's author, Hyang-Sook Hoe, PhD, a research scientist in the department of neuroscience. "One strategy to counteract development of Alzheimer's disease is to maintain balance in APP protein expression in order to prevent production of Abeta."

Source: Georgetown University Medical Center (news : web)

Explore further: Enzyme shreds Alzheimer's protein

Related Stories

Enzyme shreds Alzheimer's protein

September 20, 2006

An enzyme found naturally in the brain snips apart the protein that forms the sludge called amyloid plaque that is one of the hallmarks of Alzheimer's disease (AD), researchers have found. They said their findings in mice ...

How neuronal activity leads to Alzheimer's protein cleavage

October 20, 2008

Amyloid precursor protein (APP), whose cleavage product, amyloid-b (Ab), builds up into fibrous plaques in the brains of Alzheimer's disease patients, jumps from one specialized membrane microdomain to another to be cleaved, ...

Protein linked to Alzheimer's disease doesn't act alone

June 10, 2009

A team of U.S. investigators led by neuroscientists at Georgetown University Medical Center (GUMC) are steadily uncovering the role that amyloid precursor protein (APP) - the protein implicated in development of Alzheimer's ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.