The Shrinky Dink solution

September 9, 2009 by Erin Knapp
Inspired by Shrinky Dinks, Michelle Khine, a UCI biomedical engineering assistant professor, pioneered an easy, quick and cheap way to fabricate microfluidic chips. Image: Dave Lauridsen

Toys don't usually inspire high-tech innovation, but Michelle Khine's childhood favorite did just that.

The UC Irvine assistant professor in biomedical engineering drew upon the hours she spent playing with Shrinky Dinks — thin plastic sheets that can be colored with paint or ink and then shrunk with heat — to solve a problem in her research on how chemical cues affect cell activity.

The work earned Khine a spot on Technology Review's 2009 TR35, an annual list of 35 innovators under 35 in business and technology worldwide. Technology Review is published by the Massachusetts Institute of Technology.

"They say desperation is the mother of all invention, but I also have to credit my actual mother," Khine says. "When I was 6 years old, she introduced me to what became my lifelong No. 1 toy: Shrinky Dinks."

After earning her doctorate, Khine joined the founding faculty at UC Merced in 2006. The fledgling campus didn't have the sophisticated lab equipment of her grad school days, so Khine had to find a way to create fluid channels thinner than a human hair on the biochips she employed in her research. She wondered if she could pattern the pathways on a Shrinky Dink sheet with her desktop laser printer and then miniaturize them in a toaster oven.

It worked. As the plastic shrank, the ink particles on its surface clumped together and formed tiny ridges. After removing it from the oven, Khine applied a flexible polymer called PDMS to the cooling sheet. The ink ridges created channels in the PDMS, and when Khine peeled the polymer off the Shrinky Dink mold, she had a completed device.

The use of PDMS to construct miniscule features on wafers is called soft lithography, and it typically involves several days of turnaround time and considerable infrastructure, operating expenses (such as for a clean room) and equipment.

With the Shrinky Dink method, Khine says, researchers can easily and cheaply design and develop custom microfluidic chips within minutes. "And all they'll need is a laser printer and a toaster oven," she says.

This simplified fabrication process could revolutionize the way engineers conduct experiments and manufacture products, Khine believes, and could be used in stem cell research, to create cardiac patches for heart attack sufferers and to significantly improve the detection sensitivity of bioassays, which are utilized in pharmaceutical development and point-of-care diagnostics.

In fact, Khine's toy-inspired innovation led to the first start-up company at UC Merced, Shrink Nanotechnologies Inc., exclusive licensee of her patent-pending advances.

Khine continues to use Shrinky Dink-style fabrication at UCI, and she encourages other young engineers to approach their research creatively.

"My advice?" she says. "Be true to your inner child. Don't work - play! If you love what you do, you'll do great things."

Provided by University of California, Irvine

Explore further: Print-and-Peel Method Creates Microfluidic Devices

Related Stories

Print-and-Peel Method Creates Microfluidic Devices

December 4, 2006

Typically, researchers create microfluidic devices using the same lithographic techniques and tools used to fabricate computer chips. Lithography is expensive and slow, factors that could limit the ultimate utility of microfluidic ...

Smart Contact Lenses

July 30, 2008

"Smart" contact lenses that measure pressure within the eye and dispense medication accordingly could be made possible using a new material developed by biomedical engineers at UC Davis.

Camphor-containing products may cause seizures in children

May 6, 2009

Inappropriate use of camphor-containing products may be a common and underappreciated cause of seizures in young children, according to a new study by researchers at Albert Einstein College of Medicine of Yeshiva University. ...

Recommended for you

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

Radio frequency 'harvesting' tech unveiled in UK

September 30, 2015

An energy harvesting technology that its developers say will be able to turn ambient radio frequency waves into usable electricity to charge low power devices was unveiled in London on Wednesday.

Professors say US has fallen behind on offshore wind power

September 29, 2015

University of Delaware faculty from the College of Earth, Ocean, and Environment (CEOE), the College of Engineering and the Alfred Lerner School of Business and Economics say that the U.S. has fallen behind in offshore wind ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.