Scientists demonstrate role of protein in distinguishing chromosome ends from DNA breaks

September 17, 2009

The Stowers Institute's Baumann Lab has demonstrated how human cells protect chromosome ends from misguided repairs that can lead to cancer. The work, published in The EMBO Journal, a publication of the European Molecular Biology Organization, follows the team's 2007 in vitro demonstration of the role of the hRAP1 protein in preventing chromosome ends from being fused to new DNA breaks.

Chromosomes are linear. Their ends (called telomeres) should look like DNA breaks to the proteins that repair them. But somehow, cells are able to distinguish chromosome ends from DNA breaks. In this work, the team demonstrated that the human RAP1 protein plays a key role in preventing chromosome ends from being fused to new DNA breaks. Chromosome end fusions result in genomic instability, which can cause cancer. These findings suggest that RAP1 plays a critical role in cancer prevention in humans.

"Protecting naturally occurring chromosome ends from erosion and fusions may increase longevity and reduce cancer risk," said Jay Sarthy, formerly a graduate student in the Baumann Lab and lead author on the paper. "A protein that protects chromosome ends may provide an attractive target for drugs that can help to stave off aging and cancer."

"Our finding has paved the way to investigate the mechanism by which hRAP1 protects chromosome ends from undergoing fusions," said Peter Baumann, Ph.D., Associate Investigator and senior author on the publication. "This research contributes to our understanding of chromosome stability and, thereby, and cancer. If partial loss of hRAP1 function causes chromosomal instability, as suggested by our current work, then mutations in RAP1 may be linked to a predisposition for ."

Identifying hRAP1 as a critical protector of chromosome ends was an important step in understanding how telomeres are protected from DNA repair. The Baumann Lab will move forward in their efforts to understand what hRAP1 does to protect telomeres from repair — the proteins with which it interacts, and how it inactivates DNA repair specifically at chromosome ends.

Source: Stowers Institute for Medical Research

Explore further: Study: Cells prevent DNA repair

Related Stories

Study: Cells prevent DNA repair

November 23, 2005

Scientists say they've discovered cells co-opt the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes.

Protein 'chatter' linked to cancer activation

August 13, 2007

Scientists have found the existence of cross-talk between human chromosome ends and the protein complexes central to the stability of the entire human genome, a “chat” that contributes to cancer development.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.