Scientists to work on non-volatile 'universal memory' devices in new clean room facility

September 2, 2009
New Mountbatten Building clean room, University of Southampton

The University of Southampton’s Southampton Nanofabrication Centre, which opens next week (9 September), will make it possible to manufacture high-speed and non-volatile 'universal memory' devices for industry within 5 years. 

According to Dr Yoshishige Tsuchiya from the Nano Group at the University's School of Electronics & Computer Science, the Nano electromechanical systems (NEMS) available within the new clean room will make high-speed, non-volatile and low-power computer memory a reality. 'This high-speed, non-volatile and low-power NEMS memory will be suitable for pen drive devices for PCs and mobile applications and will mean that computers will warm up immediately when switched on and will have a ‘sleep’ switch to conserve energy,’ said Dr Tsuchiya. 

Working with Professor Hiroshi Mizuta in the Nano Group, Dr Tsuchiya will combine conventional silicon technology with the NEMS concept. ‘In the clean room, we will have both conventional equipment and new facilities such as Electron Beam Lithography and Focused Ion Beam, which we will use to fabricate the new ,’ Dr Tsuchiya added. 

The academics also plan to use the new equipment to do what they call “More than Moore” and “Beyond CMOS” (Complementary metal-oxide-semiconductor).  The former involves integrating nanoelectromechanical Systems (NEMS) into conventional electronic devices to create advanced switch, memory and sensor devices, while the latter involves working on quantum information devices based on single-electron and single-spin device technology which could realize massively-parallel information processing.

 ‘I believe that if we adopt unique properties of well-controlled silicon nanostructures and co-integration with other emerging technologies such as NEMS, nanophotonics and nanospintronics, we can develop extremely functional information processing devices, faster than anything we could ever have imagined with just conventional technologies,’ Professor Mizuta said.

Source: University of Southampton

Related Stories

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.