Scientists discover how to send insects off the scent of crops

September 24, 2009

Biotechnology and Biological Sciences Research Council (BBSRC)-funded research, published this week in Chemical Communications, describes how scientists have discovered molecules that could confuse insects' ability to detect plants by interfering with their sense of smell. This could reduce damage to crops by insect pests and contribute to food security.

Lead researcher Dr Antony Hooper of Rothamsted Research, an institute of BBSRC said: "One way in which insects find each other and their hosts is by smell, or more accurately: the detection of chemical signals - pheromones, for example. Insects smell chemicals with their ; the chemical actually gets into the antennae of the insect and then attaches to a protein called an odorant-binding protein, or OBP. This then leads to the insect changing its behaviour in some way in response to the smell e.g. flying towards a plant or congregating with other insects."

Studying an OBP found in the silkworm moth Bombyx mori, Dr Hooper and his team were able to look at how the OBP and a relevant pheromone interact. They also tested the interaction between OBP and other molecules that are similar to, but not the same as, the pheromone.

Dr Hooper continued: "As well as learning about the nature of this interaction we've actually found that there are other compounds that bind to the OBP much more strongly than the pheromone. We could potentially apply these compounds, or similar ones, in some way to block the insects' ability to detect chemical signals - the smell would be overwhelmed by the one we introduce. We'd expect the insects to be less likely to orientate themselves towards the crop plants, or find mates in this case, and therefore could reduce the damage.

"There is a lot of work to do from this point. We want to test this idea with important crop - we'll probably start with aphids because they are a serious pest and we have some idea of what the OBPs are like from the . We'd also hope to apply our knowledge to such as tsetse flies and mosquitoes that carry human diseases. And ultimately we'll look at developing ways to design suitable compounds to control these pests."

Professor Douglas Kell, BBSRC Chief Executive said: "Around a quarter of crops are lost to pests and diseases and so if we are to have enough food in the future it is not just a matter of increasing gross yield. To secure our future food supply we must look for new and innovative ways to prevent and control pests and diseases. This is an interesting finding that could be applied across a number of important insect pests and may have far reaching implications for preventing human disease as well."

Source: Biotechnology and Biological Sciences Research Council (news : web)

Explore further: Honey bee chemoreceptors found for smell and taste

Related Stories

Honey bee chemoreceptors found for smell and taste

October 25, 2006

Honey bees have a much better sense of smell than fruit flies or mosquitoes, but a much worse sense of taste, according to researchers at the University of Illinois at Urbana-Champaign.

Picky-eater Flies Losing Smell Genes

April 2, 2007

A UC Davis researcher is hot on the scent of some lost fruit fly genes. According to population biology graduate student Carolyn McBride, the specialist fruit fly Drosophila sechellia is losing genes for smell and taste receptors ...

Unique pheromone detection system uncovered

June 26, 2008

Researchers at UT Southwestern Medical Center have overturned the current theory of how a pheromone works at the molecular level to trigger behavior in fruit flies.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.