Scientists increase imaging efficiency in cell structure studies

September 3, 2009

Scientists in the National Institute of Biomedical Imaging and Bioengineering (NIBIB) Laboratory of Bioengineering and Physical Science have developed a new technique that allows researchers to visualize fine details of cell structure three-dimensionally in thick sections, thus providing greater insight into how cells are organized and how they function. The work is described in a report published online this week in Nature Methods.

The new electron tomography method, referred to as BF STEM tomography, lets researchers image samples that are more than three times the thickness of typical samples.

Electron tomography is carried out at the nanoscale on individual cells. Conventionally, high-resolution imaging of biological specimens has been accomplished by cutting cells into thin sections (300 nanometers or less) and imaging each section separately. Although reconstructing an entire structure from thin sections is laborious, thin sections are used because images of thicker sections typically are blurred. Serial BF STEM tomography accomplishes the same work using fewer yet thicker specimen sections, leading to faster reconstruction of intact organelles, intracellular pathogens, and even entire mammalian cells.

Drs. Alioscka Sousa, Martin Hohmann-Marriott, Richard Leapman and colleagues in NIBIB, in collaboration with Dr. Joshua Zimmerberg and colleagues in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), demonstrated feasibility and advantages of BF-STEM tomography in a study of infected with , a parasite that causes malaria. High-resolution 3D reconstructions of entire cells were generated by serially imaging just a few thick sections. The intricate system of red blood cell and parasite membranes, as well as several organelles, can be seen in detail.

"We believe that the new technique, which was conceived by Dr. Sousa on the project team, will lead to improved 3D visualization of larger internal structures in mammalian cells at a nanoscale. And it will complement cryo electron tomography and super-resolution optical imaging approaches," according to Dr. Leapman.

Most high-performance electron microscopes can readily be equipped to utilize the BF STEM tomography approach. "This exciting new method, with its ability to provide nanoscale structural details over three dimensions, has the potential for broad application in cell biology," says NIBIB Director Roderic Pettigrew. "This should open new vistas in the understanding of the interplay between cellular structure and function, and is a great example of NIBIB-supported research that moves medical science forward through technological innovation."

Source: NIH/National Institute of Biomedical Imaging & Bioengineering

Explore further: FEI to Provide Expertise to European Union's 3D Electron Microscopy Network

Related Stories

Molecular anatomy of influenza virus detailed

December 30, 2006

Scientists at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), part of the National Institutes of Health in Bethesda, Md., and colleagues at the University of Virginia in Charlottesville ...

An architectural plan of the cell

March 6, 2007

Like our body every cell has a skeleton that provides it with a shape, confers rigidity and protects its fragile inner workings. The cytoskeleton is built of long protein filaments that assemble into networks whose overall ...

The closest look ever at native human tissue

December 5, 2007

Seeing proteins in their natural environment and interactions inside cells has been a long-standing goal. Using an advanced microscopy technique called cryo-electron tomography, researchers from the European Molecular Biology ...

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.