Physicists Find a World of Motion In the Mystery of Aging Glass

September 19, 2009

( -- Physicists super-cooled a liquid into glass in order to observe the slowing of particles. It's a material that still perplexes researchers despite thousands of years of household and industrial use.

Physicists working with glasses, a material that still perplexes researchers despite thousands of years of household and industrial use, have found new clues about how glasses age.

The University of Pennsylvania-led study set out to determine why glasses become more viscous and rigid over time without major changes to their molecular structure, a known as aging. The researchers introduced a new technique to permit observation of particle rearrangements in an aging glass just after its formation. The findings provide experimental input for modern theories of glasses and provide insight about dynamic arrest in systems ranging from traditional molecular glasses to traffic jams.

The physicists created soft colloidal glasses by suspending microgel spheres in water. The microgel particles were special in that their diameters vary with changes in temperature. Using a mercury lamp to focus energy into the colloidal suspension, the team rapidly heated the spheres, causing them to shrink, move freely and rearrange in an experimentally-induced . The team then removed the light, thus quenching the entire system using a rapid temperature drop and returning the liquid to a glass state in about a tenth of a second.

In the following tens of seconds, the team used a to observe what they believe to be the reason why the dynamics of glass get slower and more sluggish as they age. Researchers observed a special class of rearrangement event in which the particles composing the glass dramatically change their local environments, losing neighboring particles never to regain them. The number of these so-called irreversible rearrangement events decreased as the glass continued to age, and the number of particles required to move as part of these irreversible rearrangements increased. Initially, rearrangement of particles would occur in groups of 10 to 20. As time passed and the glass continued to relax, a real concerted effort was required. In this case, some 50 to 100 particles were required to move to gain a better particle configuration, slowing the process even further.

Thus, as glass ages, the motion of more and more particles is required to accompany irreversible arrangements, thereby slowing glass dynamics.

“The nature of the glass phase is a deep and long-standing unsolved problem in science, and insights about how these materials age hold potential for applications ranging from improved vehicles for drug delivery to novel coatings based on polymer, ceramic, and metallic glasses,” said Peter Yunker, a doctoral student in the Department of Physics and Astronomy at Penn.

The Penn researchers employed state-of-the-art digital imaging technology and computer image analysis for their microscopy experiments. “We used microscopy to visualize the structure and dynamics of ‘big slow-moving atoms’ in the colloidal glass,” said Arjun Yodh, professor in the Department of Physics and Astronomy at Penn. “ We discovered that only a very select class of fast-moving clusters of play a role in helping the to find its low energy configurations.”

The study, “Irreversible Rearrangements, Correlated Domains, and Local Structure in Aging Glasses,” was published in the Sept. 11 issue of the journal Physical Review Letters.

Provided by University of Pennsylvania (news : web)

Explore further: Scientists look through glass to find secrets that are less clear

Related Stories

Physicist opens new window on glass puzzle

August 9, 2007

When most people look at a window, they see solid panes of glass, but for decades, physicists have pondered the mysteries of window glass: Is glass a solid, or merely an extremely slow moving liquid" An Emory University research ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 19, 2009
A nice experiment, the only problem of these artificial model system is, they're behaving like computer simulations: they're designed to support theory, not vice-versa.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.