Physicists Investigate Unusual Four-Qubit Entanglement

September 30, 2009 By Lisa Zyga feature
Four-qubit bound entanglement may have applications in secret sharing protocols, such as the secret code used to protect the launch sequence of a nuclear missile. Credit: DOD Defense Visual Information Center.

(PhysOrg.com) -- For the first time, physicists have experimentally demonstrated a four-qubit bound-entangled state - a peculiar form of entanglement that cannot be distilled (optimized) by the usual means. However, the scientists have found a novel method for distilling the entanglement by working with two qubits at a time. As the researchers explain, the special properties of bound entanglement could make it a useful quantum resource for new multiparty communication and secret sharing schemes, and the results could also contribute to a deeper understanding of the foundations of quantum mechanics.

In their study, physicists Elias Amselem and Mohamed Bourennane of Stockholm University have investigated the counterintuitive puzzles of bound entanglement. While entanglement of two pure states is fairly well understood by physicists, the entanglement of mixed and multipartite (more than two) states, such as bound entanglement, is still under intense research.

leads to the most counterintuitive effects in quantum mechanics, and it is of great relevance in advanced methods and also opens a number of questions about the nature of entanglement itself,” Bourennane told PhysOrg.com. “Until now, there is, in general, no known measure for entanglement for a system of more than two particles; therefore, no one is able to say that a state is more or less entangled than the other. At the same time, it is still quite difficult to observe multi-particle entanglement.”

As Bourennane explained, inevitable interactions with the environment can cause quantum entanglement to become noisy during the information processing. An important and crucial question is to know which of the noisy states can be distilled to maximally entangled states, with the help of local operations and classical communication, and then be useful again for further information processing. For this reason, the theoretical discovery of bound entanglement (by Ryszard Horodecki, Michal Horodecki and Pawel Horodecki) is very important, being a class of quantum entangled states where no entanglement can be distilled.

“Our paper reports for the first time on the experimental evidence of the existence of the bound entangled state, the so-called Smolin state, and fully characterizes it using quantum state tomography,” Bourennane said. “We also study its entanglement properties, using the separability criterion, the Bell inequality, and the witness method. As can be seen, the paper contains new achievements and new insight regarding the general understanding of entanglement.”

To create the Smolin state in the laboratory, the scientists used polarized photons as qubits. Using a laser, they pumped two ultraviolet pulses into a nonlinear crystal to create four photons, entangled in pairs. Then, by applying single-polarization-qubit flip and phase gates between one photon from each pair, the scientists created a bound-entangled state that is an equal mixture of all four Bell states of the four photons. The researchers fully characterized the entanglement properties of the Smolin state, including constructing its density matrix using quantum-state tomography.

After creating the four-qubit bound-entangled state, the scientists investigated distillation. In general, entanglement distillation is a way to maximize entanglement by overcoming noisy channels. Although a bound-entangled state cannot be distilled by local operators and classical communication, it can be distilled in a different way.

“We have experimentally demonstrated the unlocking entanglement protocol where two of the four parties sharing the bound entangled state join and perform a Bell measurement, and then broadcast their measurement results to the other two parties, which will then share a maximally ,” Bourennane said.

As the physicists explain, these unusual properties make the Smolin bound-entangled state useful for novel multiparty quantum communication schemes, such as secret sharing, communication complexity reduction, and remote information concentration.

“For example, in the secret sharing protocol, the splitting of a secret in a way that a single person is not able to reconstruct it is a common task in information processing and especially high security applications,” Bourennane said. “Suppose, for example, that the launch sequence of a nuclear missile is protected by a secret code. Yet, it should be ensured that a single lunatic alone is not able to activate it, but at least two lunatics are required. Solutions for this problem, and its generalization and variations, are studied in classical cryptography. Such problems are called secret sharing. The aim is to split information, using some mathematical algorithms, and to distribute the resulting pieces to two or more legitimate parties. However, classical communication is susceptible to eavesdropping attacks. As the usage of quantum resources can lead to unconditionally secure communication, protocols introducing quantum cryptography to secret sharing have been proposed. The distribution of the four-qubit bound-entangled Smolin state among four communicating parties allows the information splitting and the eavesdropper protection simultaneously.”

More information: Elias Amselem and Mohamed Bourennane. “Experimental four-qubit bound .” Nature Physics. Published online 23 August 2009. DOI: 10.1038/NPHYS1372

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Researchers violate Bell’s inequality with an atom and a photon

Related Stories

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

8 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ShadowRam
2.8 / 5 (4) Sep 30, 2009
All this effort into cryptography, and the human factor will always fail it.

Even now its way easier to socially engineer someone for the info you want.

FindAlex
Sep 30, 2009
This comment has been removed by a moderator.
Foolish1
Sep 30, 2009
This comment has been removed by a moderator.
ben6993
Sep 30, 2009
This comment has been removed by a moderator.
out7x
1 / 5 (1) Oct 01, 2009
Correlations between entangled particles is the basis of Bell's inequality theorem published in 1964. Quantum calculations would need hundreds of quantum bits.
UBTIME
5 / 5 (1) Oct 01, 2009
It seems that more pieces in a puzzle increases the difficulty of the arrangement for a complete solution. One day the whole picture will be seen and all pieces will have order. "All Knowing"
NeilFarbstein
5 / 5 (1) Oct 01, 2009
It seems that more pieces in a puzzle increases the difficulty of the arrangement for a complete solution. One day the whole picture will be seen and all pieces will have order. "All Knowing"


quite a cryptic remark. You seem at a loss for words.
Foolish1
not rated yet Oct 06, 2009
All this effort into cryptography, and the human factor will always fail it.


For all the hype all these systems can do is provide a "magical" OTP source. Imparting trust necessary to prevent MITM is still a fully "classical" endeavour.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.