Nanoparticle-based battlefield pain treatment moves a step closer

September 24, 2009

University of Michigan scientists have developed a combination drug that promises a safer, more precise way for medics and fellow soldiers in battle situations to give a fallen soldier both morphine and a drug that limits morphine's dangerous side effects.

They use to devise ultra-small particles capable of carrying the drugs into the body. The development of the combination drug makes possible a precise feedback system that can safely regulate release of the drugs aboard the .

The scientists at the Michigan Nanotechnology Institute for Medicine and Biological Sciences report their results in the September issue of Bioorganic & Medicinal Chemistry Letters.

injured in combat typically receive morphine as soon as possible to relieve pain. Morphine, however, also depresses normal breathing and blood pressure, sometimes to life-threatening levels. So medics need to give a short-acting drug that aids normal respiration and heart beat, but in doses that still allow the morphine to relieve pain effectively. Today, achieving that balance is a challenge outside a hospital.

The that U-M scientists have developed promises to make balanced treatment possible even in combat zones, says James R. Baker, Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS) and the study's senior author.

"This system could improve pain management for millions of patients with chronic illnesses," says Baker, Ruth Dow Doan Professor and allergy division chief in the U-M Department of Internal Medicine.

The long-range goal of the research, funded by the U.S. Defense Advanced Research Projects Agency, is to develop a practical method that medics or soldiers themselves could administer, perhaps using an auto-injector device.

U-M chemists screened several compounds to search for a successful "pro drug," a drug that can release or become another drug. In this case, they wanted one that could convert to Naloxone, a drug now used to counter morphine's effects, but would activate only when blood oxygen levels drop too low. In laboratory tests using human plasma, one pro drug successfully sensed oxygen levels and turned on or off as needed.

"When respiratory distress is too severe, that will trigger release of Naloxone, the antagonist (morphine-suppressing) drug. When the oxygen blood levels go up, that will stop the action of the antagonist drug and more morphine will be available," says Baohua Huang, Ph.D., the study's first author and a research investigator at the Michigan Nanotechnology Institute and in Internal Medicine.

MNIMBS scientists are proceeding with animal studies of the pro drug's effects and will develop a dendrimer that can carry the pro drug and , using a dendrimer platform technology previously developed at U-M. They hope to advance to more animal and eventually human studies.

More information: Bioorganic & Medicinal Chemistry Letters, Volume 19, Issue 17, 1 September 2009, pp. 5016-5020

Source: University of Michigan Health System (news : web)

Explore further: Potential new pain killer drug developed by scientists at Leicester and Italy

Related Stories

Morphine kills pain -- not patients

March 21, 2007

Many people, including health care workers, believe that morphine is a lethal drug that causes death when used to control pain for a patient who is dying. That is a misconception according to new research published in the ...

Morphine dependency blocked by single genetic change

January 28, 2008

Morphine’s serious side effect as a pain killer – its potential to create dependency – has been almost completely eliminated in research with mice by genetically modifying a single trait on the surface of neurons. The ...

Researchers show how morphine can be given more effectively

April 27, 2009

Researchers at the Hebrew University of Jerusalem have found a way to maintain the pain-killing qualities of morphine over an extended period of time, thus providing a solution for the problem of having to administer increasing ...

Scientist Unraveling Mystery of Treating Chronic Pain

September 14, 2009

(PhysOrg.com) -- Successfully treating chronic pain with opioids such as morphine -- minus the side effects -- may soon become a reality, bringing relief to millions of people who suffer from debilitating pain, according ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.