IMEC unveils promising mechanically-stacked GaAs/Ge multijunction solar cell

Sep 22, 2009
IMEC's mechanically stacked GaAs/Ge cell

At the European Photovoltaic Solar Energy Conference (Hamburg, Germany), IMEC presents a mechanically-stacked GaAs/Ge multijunction solar cell. This is the first promising demonstrator of IMEC’s novel technology to produce mechanically stacked, high-efficiency multijunction solar cells, aiming at efficiencies above 40%.

At the top of the stack is a one-side contacted GaAs top cell that is only 4µm thick and that is transparent for . Its efficiency is 23.4%, which is close to the efficiency of standard GaAs cells. has succeeded in transferring this GaAs top cell onto a Ge bottom cell, creating a mechanical stack. In that stack, the Ge bottom cell is separately contacted. It has a potential efficiency of 3-3.5%, which is higher than Ge bottom cells in state-of-the-art monolithically stacked InGaP/(In)GaAs/Ge cells. Looking forward, Giovanni Flamand, team manager at IMEC, expects to show a first working triple-junction cell beginning of 2010.

This cell is a demonstrator of IMEC’s innovative technology to produce mechanically stacked, high-efficiency InGaP/GaAs/Ge triple-junction solar cells. This includes manufacturing world-class thin-film III-V cells and Ge bottom cells, and developing a technology to mechanically stack them. The expected conversion efficiencies are 1-2% higher than those obtained today with monolithic triple-junction solar cells (> 40% with concentrated illumination). In addition, the new cells show an enhanced spectral robustness. Stacked solar cells combine cells made from different materials to capture and converse a larger part of the light spectrum than is possible with a single material.

Dr. Jef Poortmans, IMEC’s Photovoltaics Program Director: “Mechanical stacks are more complex to handle and interconnect. But they definitely offer a way to increase the conversion efficiency and energy yield of high-efficiency . And they also enable an efficient way to try and use new combinations of materials. For this technology, we profit from IMEC’s expertise in 3D stacking, growing III-V layers, and solar cell processing.”

Source: IMEC

Explore further: Researchers demonstrate electrical advantages of direct CU etch scheme for advanced interconnects

Related Stories

NREL Solar Cell Sets World Efficiency Record at 40.8 Percent

Aug 13, 2008

(PhysOrg.com) -- Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light ...

Solar Cells with 60% Efficiency?

Jan 09, 2008

Nuclear Engineer Lonnie Johnson, best known for his invention of the super soaker squirt gun, has recently designed a new type of solar energy technology that he says can achieve a conversion efficiency rate ...

Recommended for you

'Deep web search' may help scientists

7 hours ago

When you do a simple Web search on a topic, the results that pop up aren't the whole story. The Internet contains a vast trove of information—sometimes called the "Deep Web"—that isn't indexed by search ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.