Very High Energy Gamma Rays

September 25, 2009
Very high energy gamma rays as measured by VERITAS. The color scale indicates the number of gamma-rays seen, with white being the most. Contours show the emission from molecular gas. The open yellow cross shows the location of a neutron star (the ashes of a supernova). Credit: Acciari et. al.

(PhysOrg.com) -- Gamma-rays are the most energetic known form of electromagnetic radiation, with each gamma ray being at least one hundred thousand times more energetic than an optical light photon. The most potent gamma rays, the so-called VHE (very high energy) gamma rays, pack energies a billion times this, or even more. Astronomers think that VHE gamma rays are produced in the environment of the winds or jets of the compact, ultra-dense remnant ashes of massive stars left behind from supernova explosions.

There are two kinds of compact objects produced in supernovae: and (stars made up predominantly of neutrons). The winds, jets, or magnetic fields from the environments of these objects are known to be able to accelerate electrons to very close to the speed of light, and when light scatters off such energetic particles it becomes energized as well, sometimes turning into VHE . An alternative scenario suggests that colliding protons could be the source of the VHE gamma rays.

VERITAS (the Very Energetic Radiation Imaging Telescope Array System) is designed to study gamma rays. It consists of four 12-m telescopes located at the Fred L. Whipple Observatory at Mt. Hopkins, Arizona. A team of eight CfA astronomers and a large international group of their colleagues used VERITAS to detect VHE gamma rays from a supernova remnant located in our galaxy about 40,000 light-years from earth. The array was able to obtain an image of the VHE emission; its high-confidence detection was notable for showing that these powerful gamma rays come from an extended region.

The scientists were surprised to find that the emission is centered on a nearby molecular cloud (as measured from the cloud's millimeter wave emission), and noticeably offset from the location of the neutron star itself. One implication is that these VHE gamma rays might not be produced by energetic electrons accelerated by the compact object, but by protons interacting with the molecular cloud. The new paper provides a deeper look at the physical processes underway in the environment of these extreme cosmic objects.

Provided by Harvard-Smithsonian Center for Astrophysics (news : web)

Explore further: MAGIC discovers variable very high energy gamma-ray emission from a microquasar

Related Stories

Mystery compact object producing high energy radiation

July 12, 2005

In a recent issue of Science Magazine, the High Energy Stereoscopic System (H.E.S.S.) team of international astrophysicists reports the discovery of another new type of very high energy (VHE) gamma ray source.

Discovery of gamma rays from the edge of a black hole

October 27, 2006

The astrophysicists of the international H.E.S.S. collaboration report the discovery of fast variability in very-high-energy (VHE) gamma rays from the giant elliptical galaxy M 87. The detection of these gamma-ray photons ...

The Search For The History Of The Universe's Light Emission

April 20, 2006

The light emitted from all objects in the Universe during its entire history - stars, galaxies, quasars etc. forms a diffuse sea of photons that permeates intergalactic space, referred to as "diffuse extragalactic background ...

Discovery of a new type of very-high-energy gamma ray emitter

February 6, 2007

An international team of astrophysicists from the H.E.S.S. collaboration has announced the discovery of a new type of very-high-energy (VHE) gamma ray source. Combining data obtained during a systematic survey of the Galactic ...

Recommended for you

Swiss firm acquires Mars One private project

December 2, 2016

A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.

Bethlehem star may not be a star after all

December 2, 2016

It is the nature of astronomers and astrophysicists to look up at the stars with wonder, searching for answers to the still-unsolved mysteries of the universe. The Star of Bethlehem, and its origin, has been one of those ...

Tangled threads weave through cosmic oddity

December 1, 2016

New observations from the NASA/ESA Hubble Space Telescope have revealed the intricate structure of the galaxy NGC 4696 in greater detail than ever before. The elliptical galaxy is a beautiful cosmic oddity with a bright core ...

Could there be life in Pluto's ocean?

December 1, 2016

Pluto is thought to possess a subsurface ocean, which is not so much a sign of water as it is a tremendous clue that other dwarf planets in deep space also may contain similarly exotic oceans, naturally leading to the question ...

Embryonic cluster galaxy immersed in giant cloud of cold gas

December 1, 2016

Astronomers studying a cluster of still-forming protogalaxies seen as they were more than 10 billion years ago have found that a giant galaxy in the center of the cluster is forming from a surprisingly-dense soup of molecular ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (1) Sep 25, 2009
Repulsive Forces Between Neutrons Produce . . .

The VHE gamma rays observed from "the compact, ultra-dense remnant ashes of massive stars left behind from supernova explosions" [See: "Attraction and repulsion of nucleons: Sources of stellar energy," Journal of Fusion Energy 19 (2000) 93-98].

With kind regards,
Oliver K. Manuel
brant
1 / 5 (1) Sep 25, 2009
They dont mention anything about the possibility of a plasma pinch being the source of these gamma rays.
In other papers they talk about 'knots' around supernova that produce cosmic rays. These knots are plasma pinches and can also produce lower energy photons on a distributed timescale, thereby also explaining the mystery of the high and low energy gammas reaching us at different times(no quantum foam etc)...

When the look further I suspect the will find a filament connecting the "neutron" star and the source of the gamma emission.
omatumr
1 / 5 (1) Sep 27, 2009
They dont mention anything about the possibility of a plasma pinch being the source of these gamma rays.


Yes. In the cosmos and in each atom in it, the highest energy photons come from the region of highest density.

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.