Genes controlling insulin can alter timing of biological clock

September 17, 2009
This is the Expanded Clock Gene Network. Clock components in the core feedback loop (blue), as well as other components known to regulate the clock (light blue), along with interacting genes (green, red, purple). Common interacting proteins are depicted in pink. Credit: John Hogenesch, PhD, University of Pennsylvania School of Medicine; Cell

( -- Many of the genes that regulate insulin also alter the timing of the circadian clock, a new study has found.

Although insulin responses were known to follow daily rhythms, the finding that components of the insulin-control system can reset the body's clock surprised the study's authors and suggests new approaches to treating disorders such as metabolic syndrome that can result, at least in part, from chronic disruption of the sleep-wake cycle.

"People knew that the clock regulates many different processes, but what they didn't realize what that when you tweak those processes, it feeds back and alters the clock," said Steve Kay, Dean of the Division of Biological Sciences at the University of California, San Diego, who led the study along with John Hogenesch of the University of Pennsylvania.

Several other important physiological control systems shift the clock as well, they report online this week in the journal Cell.

A controls daily physiological rhythms in many types of cells, even cells grown in culture. By engineering cultured cells to glow yellow when a particular clock gene switched on, the team made the cycle visible. They then interfered with every human gene to see which would shift the clock. Hundreds altered the timing.

"We just suddenly discovered 350 new that affect the clock that weren't known before," Kay said. Subsequent screening to confirm the genes' effect on a second clock gene narrowed the list to 200.

Genes belonging to four systems appeared on the "hit" list more often than chance would predict: insulin and folate metabolism, and two systems that govern the life cycle and fate of cells. Seven genes involved in insulin control also influenced the rhythms of the clock.

"What came out very strongly was this close relationship between circadian regulation and insulin signaling," Kay said. "There's a reciprocal relationship between circadian dysfunction and metabolic dysfunction."

Genetically altered mice with malfunctioning clocks become obese and develop diet-induced diabetes, Kay points out. And studies of humans forced into a kind of chronic jetlag have seen marks of the onset of .

"Understanding this close relationship between circadian regulation and metabolic homeostasis should provide novel ways of identifying new therapies for metabolic disease," Kay said.

The wealth of data the team has created will also serve as a resource for other scientists who study circadian rhythms, Kay said. They have deposited data describing how each gene alters the rhythm of the clock to an open-access genetics database called BioGPS, along with a new "plug-in" application that displays the cyclical response.

Scientists working with Kay at UC San Diego are currently following up on some of the links between the clock and insulin control. Kay also serves on the scientific advisory board of ReSet Therapeutics, a venture that aims to discover and develop potential dugs to treat illnesses that result from chronic disruption of circadian rhythms.

Source: University of California - San Diego (news : web)

Explore further: Mammals, fruit flies: same biological clock

Related Stories

Circadian rhythm-metabolism link discovered

July 24, 2008

UC Irvine researchers have found a molecular link between circadian rhythms – our own body clock – and metabolism. The discovery reveals new possibilities for the treatment of diabetes, obesity and other related diseases.

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.